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This note develops analytical picker blocking models to simply and accurately assess picker blocking in parallel-aisle order picking
systems when multiple picks occur at a pick point. The Markov chain–based models characterize the two bounding walking speeds for
modeling picker movement: unit walk time and instantaneous walk time. The unit walk time model has a state-space transition matrix
that is reduced by a factor of 16 for both narrow-aisle and wide-aisle systems. Additionally, the model improves upon the existing
literature by providing a closed-form expression for the narrow-aisle system with instantaneous walk time. Experimental results are
provided to demonstrate how picker blocking is influenced by pick density in a variety of scenarios under varying assumptions
regarding the maximum number of picks at a pick point. These results broaden those previously presented in the literature, as well as
demonstrate the improved efficiency of the proposed model.1
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1. Introduction

Parallel-aisle bin shelving Order Picking Systems (OPSs)
are one of the most popular alternatives for order pick-
ing in distribution centers due to minimal investment costs
while providing reconfigurability (Frazelle, 2002). Pickers
circumnavigate aisles to retrieve items from shelves and
place them on carts (or vehicles). A typical system is illus-
trated in Fig. 1. Using this simple picker-to-part mecha-
nism, warehouse managers have considerable operational
flexibility including staffing more pickers when demand is
expected to increase. Alternatively, multiple orders can be
aggregated into batches to improve picking efficiency by
reducing the number of trips needed to retrieve the set of
orders. Both adding pickers and batching orders are ex-
pected to enhance throughput. However, picker blocking
can occur when multiple pickers traverse the same pick

1A shorter and less technical version of this article was published
previously as “Analysis of Picker Blocking in Narrow-Aisle Batch
Picking” in Progress in Material Handling Research: Proceedings
of 2010 International Material Handling Research Colloquium.
∗Corresponding author

area, and this congestion reduces the benefits derived from
adding pickers (Ruben and Jacobs, 1999).

Picker blocking occurs in two ways: (i) when multiple
pickers traverse a pick area while maintaining a no passing
restriction (Gue et al., 2006; Parikh and Meller, 2010) and
(ii) two or more pickers attempt to occupy the same space
or the same resource simultaneously (Parikh and Meller,
2009). When a picker prevents another picker from passing,
in-the-aisle blocking arises as depicted in Fig. 2(a); when
pickers attempt to pick from the same storage location,
pick-point blocking occurs as depicted in Fig. 2(b).

Here we follow the terminology established in Parikh and
Meller (2010) for narrow-aisle picking systems. A picking
area is modeled as a set of pick points. A pick point is a po-
sition in the aisle where the picker stops to pick; because of
the narrow-aisle characteristic multiple pick locations are
blocked on both sides of the aisle. Thus, at every pick point,
a picker has access to multiple Stock Keeping Units (SKUs)
and blocks access to those same SKUs for other pickers.

In narrow-aisle OPSs, pickers follow one-way routes
through the aisles, whereas in a wide-aisle OPS, two-way
routes can be used. In-the-aisle blocking is associated with
narrow-aisle OPS and pick-point blocking occurs with both
narrow- and wide-aisle systems.
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1346 Hong et al.

Fig. 1. A typical parallel-aisle OPS and a routing example (mod-
ified from Gademann and Van de Velde (2005)).

Several researchers (Skufca, 2005; Gue et al., 2006;
Parikh and Meller, 2009, 2010) have investigated the ef-
fects of picker blocking and developed analytical models
to estimate the time lost due to blocking. However, the
current literature on blocking models when multiple picks
can occur at a pick point—i.e., the wide-aisle models of
Parikh and Meller (2009) and the narrow-aisle models of
Parikh and Meller (2010)—exhibits two modeling draw-
backs: complex Markov chain models and lack of closed-
form expressions. In a unit walk time case—i.e., an ex-
tremely slow walk speed—the analytical model has added
complexity due to the explicit tracking of the operational
state of each picker. In addition, for the instantaneous walk-
time model in a narrow-aisle OPS, no closed-form solu-
tion was previously presented. Closed-form expressions for
both extreme walk time situations are valuable to identify
the range of throughput rates and analyze the convergence
characteristics of the system.

This note develops and uses analytical models where mul-
tiple picks can be made at a pick point. Previously, Gue et al.
(2006) found that a batch picking strategy in narrow-aisle
OPSs is valuable when the pick time is constant at a pick
point. Parikh and Meller (2010) found that picker blocking
can be significant when the variation in pick density is high;
e.g., when the pick time at a pick point varies perhaps due
to multiple picks at a pick point. Similarly, wide-aisle OPSs
may also experience significant blocking when each pick
point requires multiple picks (Parikh and Meller, 2009).

Fig. 2. Types of picker blocking: (a) in-the-aisle (picker) blocking
and (b) pick-point blocking (Parikh and Meller, 2009).

This note improves analytical models of picker blocking
in two ways: (i) significant reduction in complexity of the
Markov chain model for unit walk time; and (ii) closed-
form expression for instantaneous walk models in narrow-
aisle OPSs. The experimental results also provide new
insight into how picker blocking is influenced by pick den-
sity across a range of scenarios for both narrow- and wide-
aisle systems and under varying assumptions regarding the
maximum number of picks at a location. The remainder
of this note is organized as follows. We define the problem
domain, including the types of picker blocking, in Section
2. Section 3 presents a new analytical model and defines
closed-form expressions for solving the narrow-aisle model.
A simulation comparison in Section 4 produces several in-
sights into practical order picking environments. Section 5
extends the analytical model to a wide-aisle OPS assuming
a pick : walk time ratio of unity. We summarize the findings
and offer suggestions for future research in Section 6.

2. Problem definition

2.1. Picker blocking models using a circular-aisle
abstraction

We use a circular-aisle abstraction shown in Fig. 3. This
abstraction was introduced by Skufca (2005) and applied
by Gue et al. (2006) to model a narrow-aisle OPS and
adapted by Parikh and Meller (2009) to model a wide-aisle
OPS. We consider two order pickers and make the following
assumptions.

1. The circular order picking aisle consists of n pick points.
2. The order pickers take a one-way traversal route, mean-

ing that they travel through that aisle in only one direc-
tion (in the circular model this implies that they move
only in a clockwise direction).

3. Pick time is constant regardless of the pick point char-
acteristics such as shelf height.

4. At a pick point, pickers pick with a probability p; q
denotes 1 − p, the probability of walking past a pick

Fig. 3. A circular order picking aisle (Gue et al., 2006) (color
figure provided online).
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Picker blocking models in parallel-aisle systems 1347

point; a picker picks again at the same pick point with
probability p independent of the number of previous
picks (i.e., if p is large, the number of picks at a pick
point is potentially large; however, this will be relaxed in
the simulation study in Section 4).

5. The potential states of a picker are picking, walking, or
standing idle due to blocking.

6. The pick time, pt, and the walk time between two pick
points, wt, are deterministic.

Note that since a pick point contains multiple SKUs the
probability of picking is not the probability of picking any
one of the SKUs but rather one minus the probably of not
picking any of the SKUs stored at that pick point (assume
each SKU is only stored in one location).

The pick time here refers to the picking of a single SKU,
which may include multiple items. The assumption of a
constant deterministic pick time is more accurate when the
number of items picked for any SKU is relatively low (and
thus all items can be retrieved by accessing the storage
location once), the SKUs are similar in size and shape,
and the storage locations require similar levels of effort to
access. A constant deterministic pick time is a common
assumption in the literature; however, this will be relaxed
in the simulation study in Section 4.

An important parameter of analytical models for picker
blocking is the ratio of the time to pick at a point to the
time to walk past that point, which is referred to as the
pick : walk time ratio. The current literature focus on two
extreme pick : walk time ratios: the unit walk time case (pick
: walk time = 1:1) and the instantaneous walk time case
(pick : walk time = 1:0)). These two cases should bound all
practical situations, which, in general, are between 1:0.05
to 1:0.2 (Gue et al., 2006).

As a performance measure, we use the percentage of time
blocked, denoted as bn

pt:wt(k) and bw
pt:wt(k), where n and w

stand for a narrow aisle (i.e., both in-the-aisle blocking
and pick-point blocking can occur) and a wide aisle (i.e.,
only pick-point blocking can occur), respectively. k is the
number of pickers in the system, where for these models
k = 2.

3. Picker blocking models in a narrow-aisle system

In this section, we develop new Markov chain models that
improve the narrow-aisle models of Parikh and Meller
(2010) for both the pick : walk time 1:1 and 1:0 cases.
Picker blocking refers to in-the-aisle blocking unless other-
wise stated.

3.1. Pick : walk time = 1:1

Let Dt denote the distance between picker 1 and picker 2 at
time t. Assume the pick : walk time ratio is 1:1, the distance

d∈Dt can be expressed as

(n + [(picker 1 position) − (picker 2 position)]) mod n, (1)

and ranges from unity to n − 1. A Markov chain is intro-
duced by defining state St = 0 (block) representing picker 1
blocking picker 2, state St = n representing picker 2 block-
ing picker 1; states [1, 2, . . . , n − 1] are given by St = Dt. All
states can be summarized by the vector [blocked, 1, 2, . . . ,
n − 1, blocked]. These states allow us to distinguish four
transition cases:

1. Transition probabilities between unblocked states.

If both pickers pick (p × p) or walk (q × q), the current
distance (Dt) does not change at t + 1. However, when
picker 1 picks while picker 2 walks (p × q), the distance
decreases by one. When picker 1 walks while picker 2 picks
(q × p), the distance increases by one.

2. Transition probabilities from an unblocked state to a
blocked state.

When the distance from picker 1 to picker 2 is unity, a
blocked state can arise if picker 1 picks (with probability p),
and picker 2 walks (with probability q). Vice versa, when the
distance from picker 1 to picker 2 is n − 1, the current state
becomes a blocked state if picker 1 walks (with probability
q) and picker 2 picks (with probability p).

3. Transition probabilities from a blocked state to an un-
blocked state.

If picker 1 is blocked by picker 2, picker 1 must wait for
picker 2 to walk (with probability q) to exit a blocked state
and vice versa.

4. Transition probabilities between blocked states.

When the current state is blocked, a pick can occur with
probability p. Blocking status remains; i.e., a blocked state
transits to a blocked state with probability p.

The transition diagram characterizing the state-space
and transition probabilities is shown in Fig. 4. Parikh and
Meller (2010) conditioned on the picker’s current operation
(walking or picking) as well as the current distance to ob-
tain the Markov property. Including the operation-related
states of two pickers requires four more states per distance;
i.e., picker 1’s pick and walk and picker 2’s pick and walk
states. Our proposed discrete-time Markov chain of picker
blocking for multiple picks with a pick : walk time = 1:1 is
not conditioned on the pickers’ current operation (walking
or picking). A Markov property of distance holds regard-
less of the previous walking or picking status and for both
the single- and multiple-pick cases.

We define a transition matrix (A) having states [block, 1,
2, . . . , n − 2, n − 1, block] by [block, 1, 2, . . . , n − 2, n − 1,
block] and a vector (v) having states [block, 1, 2, . . . , n − 2,
n − 1, block]. Parikh and Meller’s (2010) transition matrix
has dimensions 16 × (n − 1) × (n − 1); however, the model
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1348 Hong et al.

Fig. 4. State space and transitions for the Markov chain model when the picking time equals travel time: (a) the model of Parikh and
Meller (2010) and (b) our model (color figure provided online).

we present has dimensions (n + 1) × (n + 1), which is a
significant reduction:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p q 0 · · · 0 0 0
pq p2 + q2 pq · · · 0 0 0

0 pq p2 + q2 . . .
. . . 0 0

...
...

. . .
. . .

. . .
...

...

0 0
. . .

. . . p2 + q2 pq 0
0 0 0 · · · pq p2 + q2 pq
0 0 0 · · · 0 q p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Stationary distribution

We obtain:

v = [blocked, 1, 2, . . . , n − 1, blocked]
= [1, 1/p, 1/p, . . . , 1/p, 1]

that satisfies vA = v. The stationary density using ‖v‖ is
scaled to obtain a stationary probability as 2 × 1 + (n −
1)/p = 2 + (n − 1)/p. The blocking probability of one
picker in a blocked state is

bn
1:1(2) = p

2p + n − 1
, (2)
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Picker blocking models in parallel-aisle systems 1349

Fig. 5. State spaces and transitions for the Markov chain model when the travel time is infinite: (a) unblocked case and (b) blocked
case.

which is equivalent to that presented in Parikh and Meller
(2010).

3.2. Pick : walk time = 1:0

The infinite speed assumptions allow for transitions to mul-
tiple states in our Markov chain model. Thus, the probabil-
ity for each picker moving a distance x is approximated and
used to develop an estimate of a probability function for
the distance y that characterizes the change in the distance
between the two pickers.

Let random variables X1
t and X2

t represent the desired
number of locations moved in time t by pickers 1 and 2,
respectively, and Yt = X1

t − X2
t denote the change in dis-

tance between the two pickers when passing is not allowed.
As described in Parikh and Meller (2009) and Hong et al.
(2010), the probability density function of Yt (i.e., g(y)) is

g(y) = pq |y|

1 + q
for − ∞ < y < ∞. (3)

Suppose the distance at the previous state is Dt−1 = r.
The actual change in distance is bounded by the physical
blocking phenomenon and the value r. Two transition cases
are defined.

1. Transition probabilities to unblocked states.

In this case, the distribution function (3) is used directly.
Note that r is zero or n when a picker is blocked. Thus, the
change with given r is within one to n − 1:

P(Yt = y) = g(y) = pq |y|

1 + q
for 1−r < y < n − 1 − r, r = 0, . . . , n.

2. Transition probabilities to blocked states.

The next step is to calculate the probability of events with
blocking. To obtain this probability, we need to accumulate

all cases beyond the limits (0 or n). We note that there will
be blocking at state 0 if Yt ≤ −r. g(y) is symmetric and can
be calculated as

P (Yt ≥ r ) =
∞∑

y=r

pq |y|

1 + q
= p

1 + q
qr 1

1 − q
= qr

1 + q
,

P (Yt ≥ n − r ) = qn−r

1 + q
.

Figure 5 illustrates two examples. Conditional on the
current state, alternative transition models are used. While
managing the transition from blocked (0) to blocked (n)
or blocked (n) to blocked (0), we use qn/(1 + q) for the
transition probability.

The result forms the transition matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + q

pq
1 + q

pq2

1 + q
· · · pqn−2

1 + q
pqn−1

1 + q
qn

1 + q

q
1 + q

p
1 + q

pq
1 + q

· · · pqn−3

1 + q
pqn−2

1 + q
qn−1

1 + q

q2

1 + q
pq

1 + q
. . .

. . .
. . .

pqn−3

1 + q
qn−2

1 + q

...
...

. . .
. . .

. . .
...

...

qn−2

1 + q
pqn−3

1 + β

. . .
. . .

. . .
pq

1 + q
q2

1 + q

qn−1

1 + q
pqn−2

1 + β

pqn−3

1 + β
· · · pq

1 + q
p

1 + q
q

1 + q

qn

1 + q
pqn−1

1 + q
pqn−2

1 + q
· · · pq2

1 + q
pq

1 + q
1

1 + q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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1350 Hong et al.

Stationary distribution

To determine a stationary distribution, a v that satisfies
vA = v is identified as

v = [blocked, 1, 2, . . . , n − 1, blocked] = [1, p, p, . . . , p, 1].

We can scale the stationary density using ‖v‖ = 2 + (n −
1)p. Thus, the blocking probability of a picker in one of the
blocked states is

bn
1:0 (2) = 1

2 + (n − 1) p
. (4)

This closed-form expression does not appear in the previ-
ous literature to the best of our knowledge. The new state
space of pick : walk time = 1:0 contributes to deriving the
closed-form expression of Equation (4). We validate the
analytical model in Equation (4) via a comparison with
simulation models (see Appendix A for details).

3.3. Convergence characteristics

From the closed-form expressions and simulation models,
we observe the convergence characteristics over increasing
pick densities (see Appendix B for a summary of the results)
and make the following observation.

Theorem 1. In a two-picker OPS, the percentage of time
blocked converges to 1/(n + 1) as the pick density approaches
unity.

Proof. This proof is a direct extension of the previously
presented results. When the walk speed is equal to the pick
time, we can take the limit of Equation (2) as the pick
density approaches one as

lim
p→1

p
n + 2p − 1

= 1
n + 1

.

When pickers walk at infinite speed, Equation (4) converges
to the same value:

lim
p→1

1
2 + (n − 1) p

= 1
n + 1

.

This completes the proof. �

4. A simulation study

In practice, the pick time is stochastic and the maximal
number of picks at a pick point is typically not large. Be-
cause there are multiple SKUs stored at a pick point and
multiple orders within a batch may request the same SKUs,
a picker may need to make multiple picks at the same lo-
cation. The pick times can be stochastic due to variability
in pickers’ abilities and characteristics of the pick location.
Further shelf space will limit the maximum number of picks
at a pick point. This section presents the results of a simula-
tion study that analyzes the impacts of stochastic pick times
and assuming the number of picks at a pick point is limited.

Table 1. The average gap (%) and maximum gap (%) between the
analytical models and stochastic pick time models

wt = 1 wt = 0
Pick time
distribution Avg. Max Avg. Max

Uni 0.39 1.19 0.49 1.09
Tri 2.25 5.04 1.95 3.83
Exp 4.21 9.06 3.29 5.87

4.1. The stochastic pick time

We consider three pick time distributions: Uni = uniform
[min, max] = [0.5, 1.5], Tri = triangular [min, mode, max] =
[0.5, 1.5, 1.0], and Exp = exponential [mean] = [1.0], where
the time unit represents a time spent to retrieve a SKU.
The results are compared and summarized in Table 1. We
conclude from Table 1 that stochastic pick times have little
effect on the analytical results when the upper bound on
the number of SKUs picked at a pick point is unbounded.
The largest deviations in total pick time are less than 10%
and typically closer to 3 or 4%.

4.2. The finite number of picks

In Section 3, we assumed that the maximum number of
picks at a pick point is unbounded. However, in practice,
the number of picks at a pick point is finite because of the
capacity of the shelves. Let m denote the number of picks
at a pick point. According to Parikh and Meller (2009), the
expected number of picks during a tour is I = n × [(p − m
× pm + (m − 1) × p(m + 1))/(1 − p) + m × pm], where n is the
number of possible pick points in the picking area. Table 2
shows the impacts of M, an a priori defined maximal num-
ber of picks at a pick point, on the relationship between p,
the probability of picking (typically assumed to be uniform
over the entire picking area), and I , the expected number

Table 2. The expected number of picks (I) in a trip when a picker
is made at a pick point with probability = p and the maximal
number of SKUs at a pick point = M in a 20-pick point circular
OPS

M

p 10 20 50 100 Infinite

0.01 0.2 0.2 0.2 0.2 0.2
0.10 2.2 2.2 2.2 2.2 2.2
0.20 5.0 5.0 5.0 5.0 5.0
0.30 8.6 8.6 8.6 8.6 8.6
0.40 13.3 13.3 13.3 13.3 13.3
0.50 20.0 20.0 20.0 20.0 20.0
0.60 29.8 30.0 30.0 30.0 30.0
0.70 45.3 46.6 46.7 46.7 46.7
0.80 71.4 79.1 80.0 80.0 80.0
0.90 117.2 158.1 179.1 180.0 180.0
0.99 189.3 360.5 782.1 1255.3 1980.0
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Picker blocking models in parallel-aisle systems 1351

Fig. 6. The percentage of time blocked for both pick : walk time = 1 and pick : walk time = 0 varying the number of picks at a pick
point. Results for a 20-pick points-two picker system: (a) pick : walk time = 1 and (b) pick : walk time = 0.

of picks in a trip. When p is less than 0.5, the impacts are
not significant. However, as p becomes greater than 0.5, I is
affected by the assumption regarding the maximal number
of picks at a pick point. A high probability of picking is
more common in smaller picking areas and areas with fast
moving products.

When the number of SKUs picked at a pick point is lim-
ited, Theorem 1 no longer holds. Figure 6 shows that as
the pick density increases, the percentage of time blocked
converges to zero, not 1/(n + 1). Note that no picker block-
ing arises when the pick density equals exactly zero and the
percentage of time blocked equals to 1/(n + 1) only when
there is no limit on the number of picks at a point.

Observation 1: When the number of SKUs picked at a pick
point is finite (i.e., M is finite) in a two-picker OPS, the
percentage of time blocked converges to zero as the pick
density approaches unity.

4.3. Comparison simulation

We considered a triangular distribution for pick times and
assumed that the maximum number of picks at a pick point
was 20. This simulation study considered pick-to–walk time
ratios of 1:0.05, 1:0.1, and 1:0.2; the number of pick points
as 10, 20, and 50; and the number of workers = 2, 5, and
10. Results are summarized in Fig. 7 for pick-to–walk time
variation, in Fig. 8 for the number of pickers, and in Fig. 9
for the number of pick points.

We note that under these assumptions initially high levels
of picker blocking exist, but as the pick density increases
beyond 0.75, the percentage of time blocked falls and ap-
proaches zero. When the pick density is low, the variabil-
ity in pick times increases picker blocking compared with
a scenario with deterministic pick times. However, as the
pick density increases beyond 0.75, the non-deterministic

situation experiences less blocking delay because limiting
the number of picks at a pick point creates less variation.
As pick density approaches unity, the non-deterministic
situation shows a smaller loss in productivity from picker
blocking.

Figure 7 also shows that as pickers travel more quickly,
picker blocking becomes a bigger managerial issue. In par-
ticular, the impact of walk speed is more acute and higher
with relatively low pick densities (i.e., p = [0, 0.5]). As ex-
pected, Fig. 8 shows that picker blocking increases as the
number of pickers increases. These increases are less pro-
nounced for the wide-aisle system as we will see in Section
5. Though increased staffing may be considered as a means
to increase order picking throughput, the pickers’ utiliza-
tion can drop significantly because of picker blocking and
must be considered in the throughput analysis. Figure 9 in-
dicates that the number of pick points in a system can also

Fig. 7. The percentage of time blocked considering various walk
times for both deterministic pick time and infinite M (Det-Inf)
and pick times follow a triangular distribution and M = 20 (Tri-
Fin). Results for a 20-pick points-two-picker system.
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1352 Hong et al.

Fig. 8. The percentage of time blocked considering varying the
number of pickers for both deterministic pick time and infinite
M (Det-Inf) and pick time = Tri and M = 20 (Tri-Fin). Results
assuming a pick : walk time ratio = 1:0.1 for 20 pick points.

affect picker blocking, since it impacts the spread among
pickers.

5. An application: picker blocking model when pick :
walk time = 1:1 in a wide-aisle system

The wide-aisle study of Parikh and Meller (2009) demon-
strated a Markov property when transitioning from the
picker’s current operation (walking or picking) and the cur-
rent distance. Thus, we can again apply the succinct model
described in Section 3 to demonstrate the applicability of
the reduced state space model to alternative OPSs.

Similar to the narrow-aisle model, Dt denotes the dis-
tance between picker 1 and picker 2 at time t. Assume the
pick : walk time ratio is 1:1, the distance d ∈Dt can be ex-

Fig. 9. The percentage of time blocked considering varying the
number of pick points for both deterministic pick time and infinite
M (Det-Inf) and pick time = Tri and M = 20 (Tri-Fin). Results
assuming a pick : walk time ratio = 1:0.1 for a two-picker system.

pressed by Equation (1) and ranges from zero to n − 1. A
Markov chain defines state St = block representing picker
1 blocking picker 2 or picker 2 blocking picker 1; states [0,
1, . . . , n − 1] are given by St = Dt. All states can be summa-
rized by the vector [block, 0, 1, 2, . . . , n − 1]. These states
allow us to distinguish four transition cases. Again, when
multiple picks are allowed, a Markov property of distance
holds regardless of the previous walking or picking status.

1. Transition probabilities between unblocked states.

If both pickers pick (p × p) or walk (q × q), the current
distance (Dt) does not change at t + 1. However, when
picker 1 picks while picker 2 walks (p × q), the distance
decreases by one. When picker 1 walks while picker 2 picks
(q × p), the distance increases by one.

2. Transition probabilities from an unblocked state to a
blocked state.

When the distance from picker 1 to picker 2 is zero, a
blocked state can arise if both pickers pick (with probability
p × p). We assume that the choice of blocking and blocked
pickers is randomly determined. Vice versa, if both pickers
walk (q × q), the current distance (Dt) does not change at
t + 1.

3. Transition probabilities from a blocked state to an un-
blocked state.

A blocked state can be caused by either picker 1 blocking
picker 2 or picker 2 blocking picker 1. With probability 0.5
picker 1 is blocked. If picker 1 is blocked by picker 2, picker
1 must wait for picker 2 to walk (with probability q) to exit
a blocked state; thus, the probability is q/2.

4. Transition probabilities between blocked states.

When the current state is blocked, a pick can occur with
probability p. Blocking status remains; i.e., a blocked state
transits to a blocked state with probability p.

Figure 10 illustrates the state space and their transitions.
We define a transition matrix (A) having states [block, 0,

1, 2, . . . , n − 2, n − 1] by [block, 0, 1, 2, . . . , n − 2, n − 1]
and a vector (v) having states [block, 0, 1, 2, . . . , n − 2, n −
1]. The transition matrix of Parikh and Meller (2009) has
dimensions 16 × n × n; however, the model we present has
dimensions (n + 1) × (n + 1):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
q
2

0 · · · 0 0
q
2

p2 q2 pq · · · 0 0 pq

0 pq p2 + q2 . . .
. . . 0 0

...
...

. . .
. . .

. . .
...

...

0 0
. . .

. . . p2 + q2 pq 0
0 0 0 · · · pq p2 + q2 pq
0 pq 0 · · · 0 qq p2 + q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 10. State space and transitions for the Markov chain model when picking time equals travel time in a wide-aisle situation with
multiple-pick allowance.

Stationary distribution

We obtain the v satisfying vA = v:

v = [blocked, 0, 1, . . . , n − 1]

=
[

1,
q
p2

,
1 + q
2p2

, . . . ,
1 + q
2p2

]
.

We can scale the stationary density using ‖v‖ to obtain a
stationary probability. From v above, we have

‖v‖ = 1 + q
p2

+ (n − 1)
1 + q
2p2

= 2p2 + 2q + (n − 1) (1 + q)
2p2

= 2p2 − p + n (2 − p)
2p2

.

The blocking probability of blocking state of a picker is

bw
1:1(2) = v1∗

‖v‖ =
1
2

(2p2 − p + n(2 − p))/2p2

= p2

2p2 − p + n(2 − p)
. (5)

Equation (5) is identical to the result in Parikh and Meller
(2009) but results from a much smaller transition matrix.
Thus, the succinct model provides an improved foundation
to build models for other scenarios such as instances of
pick : walk time ratios of 1:0.5 and 1:0.25.

6. Conclusion and further study

In this note, an analytical study on picker blocking in
narrow-aisle systems was introduced. This study identifies
simpler, more efficient closed-form analytical models for

a multiple-pick order picking model. The simpler model
was also applied in a wide-aisle system. With wide aisles,
picker blocking is reduced but can still be significant un-
der certain scenarios and system characteristics. The use
of a Markov chain model can be applied in a wide variety
of scenarios; e.g., situations with more than two pickers
and non-extreme walk speed cases. Our model provides a
more suitable foundation for expanding to consider these
broader set of cases.
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Appendices

Appendix A: Comparison of analytical
and simulation models

Table A1 summarizes the simulation results validating the
analytical models. The results of the 1:1 analytical model
are identical to the model by Parikh and Meller (2010). The
results for the 1:0 analytical models differ from their results
by 0.032–0.170%. The gap between the performances of the
simulation model and the analytical model is 0.01–0.33%
for the metric of time blocked (Diff% = (the percentage of
time blocked by the analytical model – the percentage of
time blocked by the simulation model)/(the percentage of
the time blocked by the analytical model) × 100). There is
one exception: when picker blocking occurs rarely, for ex-
ample when p = 0.05 in pick : walk time = 1:1, the difference
between the simulation results and the analytical model
are slightly more pronounced. These results show that the

analytical model reasonably approximates a multiple-pick
OPS.

Appendix B: The percentage of time blocked for different
pick : walk time ratios

We conducted a simulation study with pick : walk time =
1:0.025, 1:0.05, 1:0.1, 1:0.2, and 1:0.5. Figure A1(a) illus-
trates the simulations’ results of a two-picker model and
Fig. A1(b) a five-picker model. The solid lines are the re-
sults with pick : walk time = 1:0, 1:0.025, 1:0.05, 1:0.1,
1:0.2, 1:0.5, and 1:1 from top to bottom. The upper dotted
line is an analytical result with pick : walk time = 1:0. The
lower dotted line is an analytical result with pick : walk
time = 1:1.

As pick density increases, the percentage of time blocked
converges to approximately the value derived in Theorem 1,
1/(n + 1). For example, when p = 0.95 shown in Fig. A1(a),

Table A1. Comparison of analytical and simulation results of the percentage of time blocked in a circular aisle (20 pick points)

Pick : walk time = 1:1 Pick : walk time = 1:0
Probability
p Analytical Simulation Diff % Analytical Simulation Diff %

0.05 0.2618 0.2580 1.43 33.8983 33.8823 0.05
0.1 0.5208 0.5225 −0.33 25.6410 25.6283 0.05
0.2 1.0309 1.0313 −0.03 17.2414 17.2454 −0.02
0.3 1.5306 1.5256 0.33 12.9870 12.9916 −0.04
0.4 2.0202 2.0186 0.08 10.4167 10.4181 −0.01
0.5 2.5000 2.5005 −0.02 8.6957 8.6871 0.10
0.6 2.9703 2.9655 0.16 7.4627 7.4567 0.08
0.7 3.4314 3.4243 0.21 6.5359 6.5327 0.05
0.8 3.8835 3.8749 0.22 5.8140 5.8007 0.23
0.9 4.3269 4.3154 0.27 5.2356 5.2224 0.25
0.95 4.5455 4.5491 −0.08 4.9875 4.9917 −0.08

Fig. A1. The percentage of time blocked over different pick : walk time ratios: (a) two pickers in 20 pick points and (b) five pickers in
100 pick points.
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Picker blocking models in parallel-aisle systems 1355

the percentage of throughput loss due to picker blocking
ranges between 4.53 and 5.00 in a 20-pick point circular
picking system with two pickers. Theorem 1 approximates
the loss as 1/21 = 4.76. Figure A1(b) converges to [3.79,
3.86].
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