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Data envelopment analysis (DEA) uses extreme observations to identify superior performance, making it
vulnerable to outliers. This paper develops a unified model to identify both efficient and inefficient outliers
in DEA. Finding both types is important since many post analyses, after measuring efficiency, depend on
the entire distribution of efficiency estimates. Thus, outliers that are distinguished by poor performance
can significantly alter the results. Besides allowing the identification of outliers, the method described is
consistent with a relaxed set of DEA axioms. Several examples demonstrate the need for identifying both
efficient and inefficient outliers and the effectiveness of the proposed method. Applications of the model
reveal that observations with low efficiency estimates are not necessarily outliers. In addition, a strategy
to accelerate the computation is proposed that can apply to influential observation detection.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Data Envelopment Analysis (DEA) introduced by Charnes et al.
in [6] is a mathematical programming technique for evaluating the
efficiency of an observation relative to a set of similar observations.
Generally viewed as a success story for the operations research com-
munity [15], DEA's real-world relevance, diffusion, and global popu-
larity are evident in literature such as Seiford et al. [27]. It has been
applied variously to financial institutions (e.g., [10,14]), technology
investment evaluation (e.g., [9]), among many other applications.

DEA efficiency estimates are quite sensitive to the presence of
outliers since the method uses extreme observations to identify su-
perior performance [28]. However, outliers can be difficult to iden-
tify, because each record describing an observation is typically a
high-dimensional vector with multiple inputs and outputs. Some
outliers are the results of measuring or recording errors, while others
are the results of unusual characteristics, including factors related to
the external environment, or uncontrollable factors. However, they
can also be associatedwith low probabilities of occurrence.When the
associated observations differ greatly from the remainder of the data
set, the outliers can represent unexpected knowledge to be gained.

If the concept of outliers is intuitive, a rigorous definition is some-
what elusive. In the literature, outliers have been loosely defined as
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an observation (or a set of observations) which appears to be inconsis-
tent with the remainder of that set of data [5]. In the efficiency es-
timation context, many authors term observations with significant
influence on others' efficiency estimates as influential observations
(e.g., [23,32]). An influential observation typically owes its influence
to the fact that it is an outlier and supports part of the deterministic
frontier. However, Pastor et al. [23] and Simar [30] observe that an
outlier is not necessarily an influential observation, and that influ-
ential observation is not necessarily far away from the data cloud.

In the nonparametric efficiency analysis literature some studies
with a particular interest in efficiency estimates attempt to detect
influential observations (e.g., [23,25,32]), while others focus on de-
tecting outliers removed from the data cloud (e.g., [13,31]). From the
perspective of the theories utilized, still others (e.g., [23,32,25]) use
estimates of DEA efficiency and the frontier concept. Wilson [31] and
Fox et al. [13] examine the dissimilarity of an input–output record to
other observations. Simar [30] notes that these types of approaches
do not take the frontier aspects of the problem into account. This is a
significant limitation, because researchers are mostly interested in
detecting overly efficient outliers with the most influence upon the
efficiency measures. As a result, another direction of the outlier liter-
ature considers statistical inferences in DEA's nonparametric context
(e.g., [30]).

This paper is motivated by a Web-based DEA benchmarking
tool for warehouse operations [19]. Although the Internet allows
researchers to collect data quickly and securely, the data may be
entered in error, or may not represent an actual facility. These draw-
backs increase the need for effective data filtering techniques that
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can identify inefficient outliers, a growing concern for researchers.
Performance benchmarking is a set of processes and practices used
to determine (i) reference values for selected performance indices,
and (ii) factors for key processes affecting performance [21]. Both
goals rely on quality data, and the latter is also affected by ineffi-
cient outliers.When examining commercial pharmacies, Johnson and
McGinnis [18] demonstrate the effect of inefficient outliers on the
results of a second stage regression to identify attributes that corre-
late positively with efficiency. They find that a particular attribute,
population of the surrounding area, is unrelated to store efficiency,
but that it correlates positively with efficiency when the inefficient
outliers are removed.

Inefficiency outliers are also an issue in post analyses using DEA
efficiency estimates, e.g., statistical testing (determining whether
two populations are equally efficient), cross-validation (using the
weights selected by each observation to define a common set
of weights in a post analysis), distribution analysis (determining
whether DEA efficiency estimates are consistent with economic the-
ories of efficiency of markets), benchmarking (identifying best and
worse practices), industry trends analysis (identifying the efficient
observations used as benchmarks for a large set of observations), etc.

Only Johnson and McGinnis [18] employ the “inefficient frontier”
concept to detect possible outliers that perform poorly. But the
“inefficient frontier” concept is ad hoc, and is not consistent with the
standard DEA axioms. Production theory assumes that observations
are bounded by those with superior performance, and that interior
points (with respect to the efficient frontier) are always feasible.
Simply applying existing procedures, e.g., Pastor et al. [23] to the in-
efficient observations violates standard axioms of DEA (production
theory) and thus is logically problematic.

This paper aims to identify outliers that influence both efficiency
estimates and DEA post analysis. We approach the problem by iden-
tifying a set of axioms and developing an approach consistent with
the axioms. Adopting a relaxed set of DEA axioms allows the detec-
tion and ranking of both efficient outliers that influence the efficiency
estimates and inefficient outliers that may influence post analysis
procedures. Identifying either efficient or inefficient outliers sepa-
rately is also possible. Applications of the model to real-world case
studies demonstrate that intuitively flagging the worst-performing
observations as inefficient outliers is not necessarily correct. In ad-
dition, a strategy to accelerate the computation is proposed that can
be applied to influential observation detection such as Pastor et al.
[23].

The remainder of this paper is organized as follows. The next
section proposes new outlier measures taking efficiency influence
into account to measure the effect of an outlier or a set of outliers.
Section 3 describes four case studies that demonstrate the proposed
method. Section 4 offers a computational remark, and Section 5 states
the conclusions.

2. Outlier measures

This section introduces the fundamentals of DEA and proposes
new outlier measures considering efficiency influence.

2.1. Fundamental

Consider an input set I and an output set J. Denote x ∈ �|I|
+ as

an input vector and y ∈ �|J|
+ as an output vector. The production

possibility set (PPS) T, representing the feasibility of transforming
inputs to outputs, is defined as

T ≡ {(x, y) : y can be produced by x}.
Shephard [29] defines the output distance function (Do(x′,y′)) and
input distance function (Di(x′,y′)) between any specific input–output

bundle (x′,y′) and boundary of T as follows:

Do(x′, y′) ≡ inf{� : (x′, y′/�) ∈ T},

Di(x
′, y′) ≡ sup{� : (x′/�, y′) ∈ T}.

Distance functions measure how far to locate (x′,y′) on the boundary
of T by changing either its outputs or inputs proportionally. Any
(x′,y′) with a distance function of one is referred to as being on the
boundary (frontier) of T.

In practice, T is unknown. Given a set of observations S with
input–output vector (xr,yr) r ∈ S, the empirical production possibility
set (EPPS) can be approximated using the following axioms [4]:

1. (Convexity) If (x,y) ∈ T and (x′,y′) ∈ T, then �(x,y)+(1−�)(x′,y′) ∈ T,
for � ∈ [0,1].

2. (Free disposability) (x′,y′) ∈ T, if (x,y) ∈ T, x′ � x and y′ � y.

The EPPS can then be expressed as a set of linear inequalities in |S|
nonnegative variables and denoted as

T̂ ≡
{
(x, y) :

∑
r∈S

xr�r �x;
∑
r∈S

yr�r � y;
∑
r∈S

�r = 1; �r �0, r ∈ S

}
.

Then the practicable estimations for distance functions are as fol-
lows:

[D̂i(x
′, y′)]−1 = min

{
� :

∑
r∈S

xr�r ��x′;
∑
r∈S

yr�r � y′ ;

∑
r∈S

�r = 1; �r �0, r ∈ S

}
,

[D̂o(x′, y′)]−1 = max

{
� :

∑
r∈S

xr�r �x′;
∑
r∈S

yr�r ��y′ ;

∑
r∈S

�r = 1; �r �0, r ∈ S

}
.

If (x′,y′) is observed and thus is feasible, the distance function
measures can be interpreted as the technical efficiency [12]1 which
estimates the relative efficiency for a particular record k ∈ S compar-
ing against all observations in S. This leads to one of the well-known
DEA models proposed by Banker et al. in [4]:

�S
k = min

�,�

{
� :

∑
r∈S

xr�r ��xk;
∑
r∈S

yr�r � yk;
∑
r∈S

�r=1;�r �0, r ∈ S

}
,

(BCC.I)

�S
k = max

�,�

{
� :

∑
r∈S

xr�r �xk;
∑
r∈S

yr�r ��yk;
∑
r∈S

�r=1;�r �0, r ∈ S

}
.

(BCC.O)

In summary, (BCC.I) and (BCC.O) provide the radial efficiency esti-
mates using T̂, which is constructed by observations according to
axioms of convexity and free disposability. Observation k is said to
be efficient and on the efficient frontier when its efficiency estimate
is one.

It should be noted that T̂ assumes free disposability, which implies
that using more inputs and producing less outputs is always feasi-
ble. Influential measures based on (BCC.I) and (BCC.O) (e.g., [23]) will
not flag inefficient observations as outliers, regardless of how poorly
they perform. Free disposability adopted in standard DEA models
actually assumes that all inefficient observations are part of the

1 In fact, it is the reciprocal of the distance function.
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PPS and does not allow for the concept of inefficient outliers; how-
ever, this paper finds that inefficient outliers matter. Johnson and
McGinnis [18] develop the idea of the “inefficient frontier” to flag
overly inefficient observations; however, they do not approach the
problem with consideration of DEA axioms and their model is thus
not consistent with the free disposability axiom. This paper relaxes
the assumption of free disposability and simply uses part of T̂ based
on convexity, allowing for potential outliers to be ranked based on
their influence.

2.2. New measures of outliers

This section proposes an outlier measure that can identify both
efficient and inefficient outliers. These outliers are measured relative
to a set constructed consistent with a subset of DEA axioms, and
the individual outliers are ranked based on their influence on the
measures. For a data set S, adopting the convexity assumption, the
convex hull of S is as follows:

T̂Sconv ≡
{
(x, y) :

∑
r∈S

xr�r = x;
∑
r∈S

yr�r = y;
∑
r∈S

�r = 1; �r �0, r ∈ S

}
.

T̂Sconv is a part of T̂ (T̂Sconv ⊂ T̂). Extending the definition of free dis-
posability, the free disposal hull of a set A ⊂ �|I|

+ × �|J|
+ is [16]:

FDH(A) ≡ {(x′, y′) : x′ �x, y′ � y for some (x, y) ∈ A}.
It is clear that T̂ = FDH(T̂Sconv) [16], namely T̂Sconv is an essential com-
ponent of EPPS without applying free disposability that makes iden-
tifying inefficient outliers impossible. Therefore, T̂Sconv characterizes
most important properties of T̂, and can be used to identify both
efficient and inefficient outliers.

To identify outliers that influence both the efficiency estimates
and DEA post analysis, radial measures with respect to T̂Sconv are
proposed. For output-oriented analyses, a measure �S

k is defined as

�S
k≡max

�
{� : (xk,�yk) ∈ T̂Sconv}

=max
�,�

{
� :

∑
r∈S

xr�r=xk;
∑
r∈S

yr�r=�yk;
∑
r∈S

�r=1; �r �0, r ∈ S

}
.

(1)

The value of �S
k measures how much the outputs of observation k

can be scaled up proportionately while remaining in T̂Sconv. �S
k �1

and (xk,�yk) /∈ T̂Sconv if �>�S
k; the projected point (xk,�S

kyk) refers
to as on the outer boundary. Further, �S

k can be interpreted as the
“distance” between k and the outer boundary; it is said that the
“distance” to the outer boundary is (100×�S

k)% of yk. �S
k =1 suggests

that k is on the outer boundary since it cannot be scaled up while
maintaining in T̂Sconv. This radial measure is identical to the output-
oriented efficiency estimate, but with respect to T̂Sconv, not T̂. As a
result, (1) has a structure similar to (BCC.O), and thus ties directly to
efficiency estimation. Observations with output efficiency estimates
equal to one will have �S

k = 1; this is formally stated as follows:

Proposition 1. For k ∈ S, �S
k = 1 if �S

k = 1.

Proof. See the appendix. �

Another measure related to k, �Sk, is defined as

�Sk ≡ min
�

{� : (xk, �yk) ∈ T̂Sconv}

= min
�,�

{
� :

∑
r∈S

xr�r = xk;
∑
r∈S

yr�r = �yk;
∑
r∈S

�r = 1; �r �0, r ∈ S

}
.

(2)

Eq. (2) has the same interpretation as (1) but scaling k in the opposite
direction. 0� �Sk �1 and (xk, �yk) /∈ T̂Sconv if �< �Sk. The projected point

(xk, �Skyk) refers to is located on the inner boundary of T̂Sconv. Similarly,
�Sk represents the distance between k and the inner boundary; it
suggests the distance is (100× �Sk)% of yk. �Sk =1 suggests that k is on
the inner boundary, and the movement passes through the output
origin (xk,0) when �Sk = 0.

The “difference” between projected points (xk,�S
kyk) and (xk, �Skyk)

is the width of segment constructed by identifying a ray within T̂Sconv
from the (output) origin (xk,0) through observation k ∈ S. To be pre-
cise, the “width” is defined as (�S

kyk − �Skyk)/yk =�S
k − �Sk, which spec-

ifies the width as a percentage of yk. In a single-output example,
suppose yk = 100 and the projected points are 120 and 70. There-
fore, �S

k =1.2 and �Sk =0.7 results in �S
k −�Sk =0.5; it is consistent with

the original units of measure.
When the observation set R is removed from S (R ⊂ S, k /∈ R), the

corresponding convex hull T̂S\Rconv may change. The associated mea-
sures are denoted as �S\R

k and �S\Rk , and are computed as follows:

�S\R
k ≡ max

�,�

⎧⎨
⎩� :

∑
r∈S\R

xr�r = xk ;

∑
r∈S\R

yr�r = �yk;
∑
r∈S\R

�r = 1; �r �0, r ∈ S\R
⎫⎬
⎭ , (3)

�S\Rk ≡ min
�,�

⎧⎨
⎩� :

∑
r∈S\R

xr�r = xk;
∑
r∈S\R

yr�r = �yk ;

∑
r∈S\R

�r = 1; �r �0, r ∈ S\R
⎫⎬
⎭ . (4)

Since k /∈ R, (3) and (4) are always feasible. It is always possible to set
�k = 1 and achieve a feasible solution. Without R, the width becomes
�S\R
k −�S\Rk . Accordingly, based on the abovemetrics, the width related

to k changes from �S
k − �Sk to �S\R

k − �S\Rk after R is removed, and the
influence on observation k due to R is measured as

�o+i
k (R) ≡ (�S

k − �Sk) − (�S\R
k − �S\Rk ). (5)

The value of �o+i
k (R) gives the change in the width of the convex

hull with respect to k and R. Clearly, �S
k ��S\R

k �1 and �Sk � �S\Rk �1.

Hence, �o+i
k (R)�0, and larger values indicate more significant

changes in the width of the convex hull with respect to k. �o+i
k (R)=0

suggests that removing the set R does not affect radial measures
through k. R has a significant effect on k if �o+i

k (R) is significantly
large.

Notably, �S
k = �Sk =1 is possible and implies k is on both the inner

and outer boundaries. Observations for which this condition holds
are typically extreme element of the EPPS, such as maximum or min-
imum scale. In this case, �S\R

k = �S\Rk = 1 (k /∈ R), which indicates that
k is unaffected by the removal of any observation set absent k. How-
ever, k may affect others and be flagged as an outlier. This additional
information regarding observation k allows us to characterize and
classify the possible source of k's dissimilarity, e.g., extreme in scale.
However, the interpretation and use of this additional information
are case dependent and subject to the user's judgment.

Other measures that consider only the change in width associ-
ated with either the inner or the outer boundary can be similarly
defined. �o

k(R) is the change caused by the outer boundary shift that
is associated with observation k and �i

k(R) is the result of the inner
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boundary shift as follows:

�o
k(R) ≡ �S

k − �S\R
k , (6)

�i
k(R) ≡ �Sk − �S\Rk . (7)

Note that �o
k(R)�0 and 0��i

k(R)� − 1. Further, �o+i
k (R) can be ex-

pressed as a combination of �o
k(R) and �i

k(R):

�o+i
k (R) ≡ (�S

k − �Sk) − (�S\R
k − �S\Rk )

= (�S
k − �S\R

k ) − (�Sk − �S\Rk )

= �o
k(R) − �i

k(R)

= |�o
k(R)| + |�i

k(R)|. (8)

Eq. (8) states that the total difference between the widths is the
sum of the inner and outer parts. �o

k(R) and �i
k(R) can be considered

separately to classify R as either an efficient or an inefficient outlier.
Eq. (8) assumes equal importance for both efficient and inefficient
outliers. However, this assumption is unnecessary. Weights can be
assigned for |�o

k(R)| and |�i
k(R)| in (8) to represent differences in the

importance of the two types of outliers, and are typically determined
based on subjective judgment.

We measure the influence of R for k based on the absolute dif-
ference shown in (5)–(7) while Pastor et al. [23] use ratios to repre-
sent the influence level. Applying Pastor et al.'s radial measure gives
(�S

k − �Sk)/(�
S\R
k − �S\Rk ), (�S

k/�
S\R
k ) and (�Sk/�

S\R
k ) associated with (5)–(7),

respectively. Ratio measures have particular drawbacks in this con-
text. First, the ratio measures are the percentage change of width as
a percentage of yk, and losses are the original geometric interpreta-
tion (e.g., the length in a one-output case). Second, (5)–(7) allow the
effect of the inner boundary shift and the outer boundary shift to be
quantified and to aggregate (and decompose) information as shown
in (8). However, methods for aggregating the ratio measures are not
obvious.

Rather than judgewhether R is outlying, this paper intends to rank
the importance of potential outliers based on their influence. �∗

k(R)
only quantifies the effect on an individual observation k. A summary
statistic of the overall influence of R on the data set provides infor-
mation to characterize R. This summary statistic is used to prioritize
and identify the observations that justify the costly activity of fur-
ther examination to confirm the validity of suspicious data. Several
summary statistics are available; for example, Wilson [32] uses total
value and the average number of individual influences, where the
number of observations that are affected is also of interest. Pastor
et al. [23] summarize individual influences by a statistical model so
that statistical inference is possible. Metrics such as total influence∑

k∈S�
∗
k(R) and average influence are reported in this work so that

the graphical meaning of data can be understood easily. To make a
judgment, a threshold must be defined. The selection on a threshold
level is case dependent, and represents the tradeoffs between the
cost of confirmation and the expense of including questionable data
in the analysis. A “loose” criterion increases the risk of the outlier's
existence and a “strict cut” costs more in confirmation.

The applications of the suggested model may be problematic if
the data set is ill-conditioned, i.e., the number of observations is
small and the variables do not vary over a sufficiently wide range
[22]. Outlier detection assumes the input–output space is stable;
otherwise it is difficult to distinguish whether the influence owes
to dissimilarity of the observation or the ill-conditioned data set. To
aggregate the input–output space to decrease the number of vari-
ables relative to the number of observations, methods proposed by
Olesen and Petersen [22] or Pastor et al. [24] may be appropriate.

y1

y2

O

A

B

C k

E

F

G

H

I

kwB

kwoB

kwoI
kwI

Fig. 1. A two-output equal-input illustration for convex hall approximation and
influential measurements.

We note that if few outliers are close to each other such that
one outlier does not differ significantly from the rest with respect
to any characteristic of interest, the approaches measuring the in-
fluence of an observation's presence will have difficulty identifying
this type of outlying data. This is termed the masking effect, and is
stated and evident in many cases [30]. To eliminate masking, a com-
bination of different observations should be removed in each stage
with |R| � 2 yielding corresponding influential measures. Consid-
ering subsets allows heterogeneous subgroups within the analysis
to distinguish themselves and they can be removed for a separate
analysis.

2.3. Example

Fig. 1 presents a two-output equal-input example. Consider an
observation set S = {A, B, C, E, F, G, H, I, k}; the convex hull is ABFGIH.
Point k can be scaled up to kwI (�S

k = (OkwI/Ok)) on the outer bound-
ary (HIG), and/or scaled down to kwB (�Sk = (OkwB/Ok)) on the inner
boundary (ABF). The width of ray Ok in the convex hull (kwIkwB) can
be measured as �S

k − �Sk = (OkwI − OkwB)/Ok. If B is dropped from
S (R = {B}), then the distance to the outer boundary remains un-
changed (�S\{B}

k = (OkwI/Ok)), while the inner boundary is shifted to

ACF such that �S\{B}
k =OkwoB/Ok, and then the width is �S\{B}

k −�S\{B}
k =

(OkwI − OkwoB)/Ok.
For k, the difference between the widths due to the existence of

B can be measured by using �o+i
k ({B}) = (OkwI − OkwB)/Ok − (OkwI −

OkwoB)/Ok = (OkwoB − OkwB)/Ok. The inner boundary shift, �i
k({B}) =

�Sk−�S\{B}
k = (OkwB−OkwoB)/Ok, is measured. The outer boundary shift

is �o
k({B}) = (OkwI − OkwI)/Ok = 0 since B does not affect the outer

boundary. Similarly, when only observation I (R = {I}) is dropped,
the inner boundary is the same, but the outer boundary changes to
HEG. The new width of the convex hull that is associated with k is
�S\{I}
k − �S\{I}k = (OkwoI − OkwB)/Ok. The influence of I, �o+i

k ({I}), �o
k({I})

and �i
k({I}), can be obtained.
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2.4. Input-oriented cases

Analogously, for any observation k the following apply in the
input-oriented cases:

�S
k ≡ min

�,�

{
� :

∑
r∈S

xr�r = �xk;
∑
r∈S

yr�r = yk ;

∑
r∈S

�r = 1; �r �0, r ∈ S

}
, (9)

�S\R
k ≡ min

�,�

⎧⎨
⎩� :

∑
r∈S\R

xr�r = �xk;
∑
r∈S\R

yr�r = yk ;

∑
r∈S\R

�r = 1; �r �0, r ∈ S\R
⎫⎬
⎭ , (10)

	S
k ≡ max

	,�

{
	 :

∑
r∈S

xr�r = 	xk;
∑
r∈S

yr�r = yk ;

∑
r∈S

�r = 1; �r �0, r ∈ S

}
, (11)

	S\R
k ≡ max

	,�

⎧⎨
⎩	 :

∑
r∈S\R

xr�r = 	xk;
∑
r∈S\R

yr�r = yk ;

∑
r∈S\R

�r = 1; �r �0, r ∈ S\R
⎫⎬
⎭ , (12)

where k /∈ R. These equivalencies specify the relationship between k
and the corresponding convex hull boundaries. Applying the same
argument to output-oriented cases, (10) and (12) are always feasible.
Based on similar arguments addressed in Section 2.2, the measure
of the effect on observation k due to R becomes

�o
k(R) ≡ 	S

k − 	S\R
k , (13)

�i
k(R) ≡ �S

k − �S\R
k , (14)

�o+i
k (R) ≡ (	S

k − �S
k) − (	S\R

k − �S\R
k ). (15)

In the input-oriented cases, the outer boundary is associated with
the inefficient observations. The corresponding measures are given
by (11) and (12), and the related difference is defined by (13). Since
	S
k �	S\R

k �1,�o
k(R)�0. Similarly, (14) is related to the change of

the boundary that is closer to the origin, which is related to efficient
observations in input-oriented analyses. 0��i

k(R)� − 1, because
�S

k ��S\R
k �1. Based on the arguments used in Section 2.1, �o+i

k (R),
defined by (15), is the total change in the width associated with
outlier candidate R, and combines the inner and the outer parts, such
that �o+i

k (R) = |�o
k(R)| + |�i

k(R)|.
Depending on the purpose of the analysis, either input- or output-

oriented approaches should be adopted. If an input-oriented DEA
model is selected to measure efficiency, an input-oriented influential
measure should be used to avoid biased conclusions, and output-
oriented influential measures should be selected when an output-
oriented analysis is used to quantify efficiency. However, if the
orientation of the analysis has not been determined, both metrics
are recommended to fully explore the data set to discover unex-
pected knowledge.

3. Case studies

This section applies the proposed model using four DEA cases.
The first two are simulated cases and illustrate the effectiveness

Fig. 2. The scatter plot of case A.

Table 1
Ranking of outliers (case A, output-oriented).

|�o| |�i| Observation
ranked by

Rank Obser-
vation

Tol. Avg. Obser-
vation

Tol. Avg. Tol.
�i+o

Avg.
�i+o

1 102 15.16 0.344 13 5.48 0.057 102 102
2 59 3.51 0.080 53 5.01 0.209 13 53
3 101 1.39 0.034 79 4.88 0.066 53 87
4 103 1.35 0.025 87 0.097 0.097 79 59
5 30 0.53 0.045 59 79
6 101 13
7 103 30
8 30 101
9 87 103

through scatters of the data. The third case compares the model
to earlier works via a common testbed, and the fourth identifies
possible outlier suspects in a warehouse data set and shows their
impact in a post analysis.

3.1. Case A – simulated bivariate case

Case A simulates a single-input single-output data set in which
100 observations are generated according to the function [30]

Y = X0.5 · exp(−U)

where X∼uniform(0, 1) and U is exponentially distributed with mean
1/3. Three extremely efficient outliers, 101, 102 and 103, are also
added. Fig. 2 plots all 103 data points.

Table 1 summarizes the outlier ranking (by total influence,∑
k∈S�

∗
k(R)) for an output-oriented analysis using the proposed

method2 ; the associated points are also indicated in Fig. 2. The first
panel of Table 1 corresponds to the outer boundary, and only five
observations affect this boundary, including the extremely efficient
outliers 101, 102 and 103. The second and third columns present
the total influence and the average influence (the total influence
divided by the number of observations affected, respectively).

2 The input-oriented analysis was calculated and similar results were developed.
The analysis is available upon request.
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Fig. 3. Histogram of BCC estimates from Scheel [26].

Similar to the first group, the second group ranks the total in-
fluence associated with the inner boundary. Only four outliers can
affect the inner boundary, verified in Fig. 2. The third group ranks
outliers by the changes in the total and average convex hull widths,
which are the sums of inner and outer parts as specified by (8).

101, 102 and 103 are flagged as outliers; this result is consistent
with the data generating process, in which 101, 102 and 103 are
purposely added as efficient outliers. Further, the average influence
of all listed observations, except for observations 102 and 53, does
not exceed 0.1 (10%), and shows that the threshold is case-dependent
if the gauging process is used to filter each new observation added
to the data set. This observation is also pointed out by Simar [30].
Finally, the masking effect does exist as seen in Fig. 2. Observations
59 and 53 are flagged as outliers, although they are extreme in scale
and differ somewhat from 101, 102 and 103. As discussed in Section
2.4, both 59 and 53 have �S

k=�Sk=1 (unlike101, 102 and 103) and can
be easily classified as extreme in scale, but belonging in the analysis.

3.2. Case B – simulated bivariate case with empirical efficiency
estimate distribution

Although it is necessary to identify the inefficient outliers, one
can argue that it is easier and sufficient to check the empirical dis-
tribution of the efficient estimates, flagging any observations below
a defined efficiency threshold as outliers (referred to in this paper
as the trimming method). The following example demonstrates that
this simple idea cannot be applied effectively in some circumstances.

Simulated efficiency estimates are commonly assumed to have
exponential or half-normal distributions with significant tail [20];
a percentage of observations in the tail thus can be specified and
flagged as outliers. However, DEA efficiency estimates rarely follow
this pattern in many observed applications. Fig. 3 plots the distri-
bution of the output-oriented BCC efficiency estimates based on the
data collected by Scheel [26], in which 63 observations each had four
inputs and two outputs.3 The estimate distribution does not fit ei-
ther the exponential or half-normal distributions, and it is difficult
to identify extremely inefficient observations. Fig. 3 shows a clear
gap in the distribution between 0.6 and 0.7. If a trimming approach
is used and 0.6 could be selected as the efficiency level below which
data is removed, then 26 observations will be removed. However,

3 Data set is available at http://www.wiso.uni-dortmund.de/lsfg/or/scheel/
doordea.htm.

Fig. 4. The scatter plot of case B.

Table 2
Ranking of outliers (case B, output-oriented).

|�o| |�i| Observation
ranked by

Rank Obser-
vation

Tol. Avg. Obser-
vation

Tol. Avg. Tol.
�i+o

Avg.
�i+o

1 43 4.77 0.795 20 2.91 0.052 43 43
2 34 0.715 0.089 31 1.77 0.047 20 15
3 25 0.648 0.043 15 0.62 0.310 31 56
4 56 0.193 0.096 9 0.21 0.011 34 34
5 33 0.080 0.007 25 20
6 55 0.027 0.002 15 31
7 30 0.022 0.022 9 25
8 56 30
9 33 9

10 55 33

Ranking of efficiency estimates from the bottom: 1, 20, 58, 24, 61, 40, 9, 15.

these observations are not necessarily distant from other observa-
tions when mapped in input–output space as Fig. 4 illustrates.

Case B is a bivariate output-oriented case. Rather than fol-
lowing the exponential distribution as in Case A, efficiency esti-
mates follow the empirical distribution obtained from Scheel [26]
(Fig. 3). Sixty-three points are generated according to Y = X0.5 · E
where X∼uniform(0, 1), and output efficiency estimates E from
Scheel's data are randomly assigned. Fig. 4 displays the scatter plot
of 63 points. Table 2 ranks the outliers.

Seven observations influence the outer boundaries, but only ob-
servation 43 has a strong impact on the other observations with
an average change of more than 0.795. However, Fig. 4 reveals that
observation 43 has an extreme scale and can be identified, since
�S
43 = �S

43 = 1, which is consistent with the data generating process.
For the inner boundary, four outliers have inefficient output esti-
mates. The bottom of Table 2 presents the observations ranked by
lowest efficiency estimates. These observations are not necessarily
the outliers through visual observation or through the proposed out-
lier detection scheme.

This example shows that the proposed approach can detect ef-
ficient and inefficient outliers. In particular, it demonstrates that in
cases of an empirical DEA efficiency estimate distribution, simply
flagging theworst-performing observations as inefficient outliers can
yield misleading results.

http://www.wiso.uni-dortmund.de/lsfg/or/scheel/doordea.htm
http://www.wiso.uni-dortmund.de/lsfg/or/scheel/doordea.htm
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Table 3
Ranking of outliers (case C, input-oriented).

Tol Avg Fox 04

Rank �i �o �o+i �i �o �o+i Mix Scale AD W93 W95

1 47 15 47 47 31 10 66 59 59 59 59
2 44 31 10 10 10 47 48 32 32 44 44
3 10 10 15 57 15 31 15 69 69 33 52
4 57 43 44 59 54 54 56 5 5 66 69
5 49 54 31 20 7 15 69 62 62 35 62
6 59 8 57 44 43 59 49 44 44 54 56
7 52 7 54 54 58 57 68 29 29 68 15
8 66 51 49 68 8 20 5 61 61 67 58
9 20 58 66 48 24 44 61 38 48 8 45

10 54 38 8 45 51 43 67 48 38 50 17

3.3. Case C – empirical multi-input and multi-output case

Data collected in Charnes et al. [7] are used as a multi-input
multi-output example. These data, containing 70 observations each
with five inputs and three outputs, constitute a common testbed
for outlier detection studies. Input-oriented analysis is applied to
compare the resulting ranks (for both total and average measures)
against Wilson [31,32] (W93 and W95, respectively) and Fox et al.
[13] (Fox04) (Table 3).

Wilson [32] measures the influence based on the change in the
super efficiency estimates as defined by Andersen and Petersen [1].
Wilson [31] extends the outlier measure suggested by Andrews and
Pregibon [2], which identifies as outliers those observations which
contribute the largest proportion of the volume of the full data set, to
the case of multiple outputs to examine the geometric properties of
input–output data directly. Fox et al. [13] propose metrics measuring
dissimilarity between any two input–output vectors in scale and mix
aspects (and also the composition of scale and mix). Observations
with highest summary dissimilarity are considered as outliers. W93
and Fox04 are listed in Fox et al. [13] and W95 uses total influence.

In [32], observation 59 is undefined using super efficiency,
because the scale of this observation is extremely large in input-
oriented analyses or extremely small in output-oriented analyses.
Fox et al. [13] also present evidence of this finding. However, unlike
in other investigations, observation 59 is not ranked as a top outlier
using the proposed method, because points such as 1, 21, 44 and 54
are now on the boundaries of the convex hull, such that 59 do not
affect them. Hence, with fewer points affected, observation 59 has
less overall effect on the entire data set.

The results obtained using various methods reveal some discrep-
ancies. As Fox et al. [13] note, the outlier detecting schemes are re-
lated to different aspects and produce different conclusions. Wilson
[32] also suggests that more than one approach should be applied
to detect outliers. The consistency among the conclusions based on
different approaches is a useful index for prioritizing the data to be
investigated: a data point is more likely to be an outlier when flagged
by several methods. Further, the inconsistency among the different
methods can suggest a direction for more study to better understand
the data.

3.4. Case D – warehouse performance

In this case, warehouse performance data collected by Hackman
et al. [17] are used to demonstrate the effectiveness of the proposed
outlier detection scheme, and especially the influence of suspect
records. There are 57 warehouse records, each having three inputs
and five outputs; some warehouses have union while others do not.
Eight records (1, 3, 6, 28, 35, 38, 46 and 50) are flagged as potential
outliers based on (8) and a threshold 0.05. Three of the eight flagged
observations are located on the inefficient frontier, but do not have

Table 4
Summary of warehouse performance comparisons.

Full data (57 records) Without outliers (49 records)

Investment > $1M � $1M > $1M � $1M

Observation no. 36 21 29 20
Sample standard deviation 0.293 0.115 0.282 0.109
p-Value 0.147 0.0989

the lowest efficiency estimates; they rank third, 18th and 27th least
efficient of the total records. This supports the insight that the out-
lier detection method does not simply identify the records with the
lowest efficiency estimates; rather it identifies the observations that
most significantly distort the production possibility set.

To investigate the relationship between warehouse performance
and capital investment, particularly the performance of those with
equipment investment of more than $1 million, an output-oriented
BCC analysis (BCC.O) is conducted. All warehouses are pooled to
obtain their efficiency estimates.

The hypothesis test, originally applied in DEA by Banker [3], is
used to test whether the two groups (greater than/less than $1 mil-
lion of equipment investment) perform identically. The hypothesis
test assumes that two groups with identical performance should
have the same parameters of the efficiency estimate distributions.
Banker suggests the use of a half-normal distribution, and the stan-
dard deviation of the half-normal distribution completely character-
izes the distribution, because the mean is zero by definition. There-
fore, the hypothesis tested is

H0 : 
H = 
L against H1 : 
H �
L

where 
H and 
L are the population standard deviations for the high
and low equipment investment warehouses, respectively.

Table 4 summarizes the efficiency estimates using the total
records and removing eight potential outliers. Using all 57 records
as peers, the standard deviation of efficiency estimates4 for ware-
houses with > $1 million investment is larger than those with
� $1 million capital investment (0.293 vs. 0.115); the difference
is statistically insignificant. The p-value is 0.147 using the full data
set as the sample. Thus we fail to reject the null hypothesis at sig-
nificant level 0.1 and can conclude that a warehouse's equipment
level does not affect warehouse performance. After identifying and
removing eight possible outliers, the difference in standard devia-
tion of the two populations is 0.183 (0.282 vs. 0.109). The p-value
is 0.0989; we reject H0 and can conclude that equipment level does
affect warehouse performance.

The results show that this paper's proposed outlier detecting
scheme identifies both efficient and inefficient outliers that can af-
fect the analysis results and produce different conclusions. However,
it is important to note that the finding flags the observations that
are most dissimilar to the other observations in the data set as mea-
sured by their influence on the EPPS, which suggests further investi-
gation of this set of observations. Should added confirmation result
in removing all observations, our results indicate an impact on the
results of post analysis.

4. Computational remark

The computation procedure of �∗
k(R) is based on removing an ob-

servation (or a set of observations) and calculating the influence on
the remaining observations. This type of method requires a mas-
sive computational effort, particularly when it is necessary to elim-
inate the masking effect. We suggest a computation strategy that

4 In fact, it is the reciprocal of the optimal value of (BCC-O).



424 W.-C. Chen, Andrew L. Johnson / Computers & Operations Research 37 (2010) 417 -- 425

will greatly reduce the computation time and that can be used to
investigate the masking effect.

When |R| = 1 and all observations are tested as potential outliers,
there are 2×|S|×|S| linear programming (LP) problems to be solved,
because for every observation we measure the influence on every
other observation for both boundaries. In reality, we only have to
calculate the effect that removing observations on a boundary has
on observations that are not on the boundary. Without loss of gen-
erality, for output-oriented analyses the optimal solution of the cor-
responding LP problems (1) and (2) has at most |I|+|J| �'s in the basis
that are non-zero. Thus at least |S|−|I|−|J| �'s are zero, and (3) and
(4) will result in the same optimal values obtained by (1) and (2)
when each of these observations is a removal candidate. This can be
stated formally in the following propositions:

Proposition 2. For k ∈ S and p ∈ S, �S
k = �S\{p}

k if �∗
p = 0 is the optimal

solution of (1) providing �S
k.

Proof. See the appendix. �

Proposition 3. For k ∈ S and p ∈ S, �Sk = �S\{p}
k if �∗

p = 0 is the optimal
solution of (2) providing �Sk.

Proof. See the appendix. �

That is, only |I|+|J| observations affect a given observation k's ref-
erence point on the boundary, so the removal of at least |S|−|I|−|J|
observations will not affect the outer boundary corresponding to
k ∈ S. Therefore, computing �o

k in (6) does not require examining the
removal of all |S|−1 observations, but only the points with zero �'s
in the optimal solution of (1). Identical arguments are made for �i

k in
(7). The observations result in a simplified procedure that solves at
most 2×|S|×(|I|+|J|+1) LP problems, and greatly reduces the number
of LP problems to be solved (especially, |S| 	 |I|+|J| which is typical).

Further, we observe that observations on the outer (inner) bound-
aries will not be affected by removal of any other observations when
measuring the distance to the outer (inner) boundary. Namely, there
is no influence on the outer (inner) boundary as measured through
k when �S

k = 1 (�Sk = 1). This can be stated formally by the following:

Proposition 4. For k ∈ S, �S
k=1 implies �S\R

k =1 where R ⊂ S and k /∈ R.

Proof. See the appendix. �

Proposition 5. For k ∈ S, �Sk =1 implies �S\Rk =1 where R ⊂ S and k /∈ R.

Proof. See the appendix. �

Thus, it is not necessary to solve (3) and (4) regarding k, which
satisfies the sufficient condition of Propositions 4 and 5, respectively.
This observation further reduces the number of LP problems needed
to be solved depending on data distribution. For example, if 20% of
the data are on the outer boundary (�S

k = 1) and 15% of the data on
the inner boundary (�Sk = 1), Propositions 4 and 5 can be applied to
indicate that 0.2×|S|×(|I|+|J|)+0.15×|S|×(|I|+|J|) problem solving can be
saved from 0.2×|S|×(|I|+|J|+1).

The procedure can be extended to cases with |R| � 2. For exam-
ple, there are (|S|−1)×(|S|−2) possible combinations of R (|R| = 2) for
each k, but Proposition 2 suggests that only (|I|+|J|)×(|S|−2) of them
are needed for solving �S\R

k . Moreover, by integrating other methods,
such as Chen and Cho [8] and Dula [11], which accelerate solving
the single DEA problem, computational time can be further reduced.
The proposed idea can also be applied to radial influence measures
such as Pastor et al. [23]. Indeed, outlier detection increases the need

to accelerate DEA computations and provides an application for a
variety of acceleration methods.

5. Conclusion

This paper presents an outlier detection method that ranks the
importance of the outliers to be investigated based upon their in-
fluence. Unlike previous outlier detection schemes, this method also
identifies inefficient outliers that could impact post-efficiency esti-
mation analysis. Where previous literature does not reconcile their
approaches with the axioms of DEA, the method presented in this
paper use the convex hull of the data by relaxing the free dispos-
ability axiom and allows the detection of inefficient outliers. In the
case studies presented, the proposed method effectively ranks out-
liers and provides added information about their locations in the
input–output space. The case studies demonstrate counter-examples
to the intuitive misunderstanding that observations with poor effi-
ciency estimates are more likely to be outliers. A real-world case also
shows that outliers detected may lead to improper conclusions in
post analysis based on DEA efficiency, such as testing the difference
in efficiency of two populations using the Kolmogorov–Smirnov test.
Moreover, we propose a strategy to reduce the computation time
of outlier detection, and suggest that the strategy can be applied to
other computational intensive influence measures such as suggested
in Pastor et al. [23].
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Appendix.

Proposition 1. For k ∈ S, �S
k = 1 if �S

k = 1.

Proof. (1) is identical to (BCC.O) but with equalities for all con-
straints. The feasible region of (1) is smaller than that of (BCC.O),
and thus �S

k ��S
k. �

S
k = 1 leads to �S

k = 1 because �S
k �1. �

Proposition 2. For k ∈ S and p ∈ S, �S
k = �S\{p}

k if �∗
q = 0 is the optimal

solution of (1) providing �S
k.

Proof. The dual of (1) is

min
ui ,vj ,u0

∑
i∈I

uixik + u0

s.t.
∑
i∈I

uixir + u0 �
∑
j∈J

viyjr r ∈ S,

∑
j∈J

viyjk = 1. (D1)

To satisfy
∑

r ∈ S�r = 1 in (1), there must exist q ∈ S such that
�∗
q >0. According to complementary slackness,

(∑
i∈Iu∗

i xiq + u∗
0

−∑
j∈Jv∗

j yjq
)
�∗
q = 0 where u∗

i , u
∗
0 and v∗

j are optimal solutions for
(D1), and thus

∑
i∈Iu∗

i xiq + u∗
0 − ∑

j∈Jv∗
j yjq = 0. The type 1 constraint

associated with q in (D1) is binding. It is clear that q � p, and
the optimal value remains the same when removing constraint∑

i∈Iuixiq + u∗
0 �

∑
j∈Jv∗

j yjq. Therefore, �
S
k = �S\{p}

k . �

Proposition 3. For k ∈ S and p ∈ S, �Sk = �S\{p}
k if �∗

p = 0 is the optimal
solution of (2) providing �Sk.
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Proof. Apply the same arguments for Proposition 2. �

Proposition 4. For k ∈ S, �S
k=1 implies �S\R

k =1 where R ⊂ S and k /∈ R.

Proof. It is clear that �S\R
k �1. When �S

k = 1 is the optimal value in
(1), �∗

k = 1 and �∗
r = 0 for r ∈ S\{k} is the optimal solution (or one of

the optimal solutions) for (1). According to complementary slackness
(
∑

i∈Iu∗
i xik + u∗

0 − ∑
j∈Jv∗

j yjk)�
∗
k = 0 where u∗

i , u
∗
0 and v∗

j are optimal
solution for the dual (D1), and thus

∑
i∈Iu∗

i xik+u∗
0−∑

j∈Jv∗
j yjk=0. The

type 1 constraint associated with k in (D1) is binding, and removing
type 1 constraints associated with R in (D1) will remain the same
objective value and cannot be better. That is (D1) without type 1
constraints associated with R will remain the same optimal value,
and it is the dual of (3). Therefore, �S\R

k = 1. �

Proposition 5. For k ∈ S, �Sk =1 implies �S\Rk =1 where R ⊂ S and k /∈ R.

Proof. Apply the same arguments for Proposition 4. �
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