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1. Introduction
Data envelopment analysis (DEA) is an axiomatic, math-
ematical programming approach to productive efficiency
analysis of firms and other decision-making units. Orig-
inating from the work of Farrell (1957), DEA’s current
popularity is largely due to the seminal paper by Charnes
et al. (1978). Thousands of DEA studies have been reported
in application areas including agriculture, education, finan-
cial institutions, health care, public sector firms, etc. DEA’s
real-world relevance, diffusion, and global acceptance are
evident from literature studies such as Seiford (1996) and
Gattoufi et al. (2004).

DEA’s chief advantage compared to econometric,
regression-based tools is its nonparametric treatment of the
frontier. Relying on general axioms of production theory,
e.g., monotonicity, convexity, and homogeneity, DEA does
not assume any particular functional form. Its direct, data-
driven approach is essential for communicating the results
of efficiency analysis to decision makers. However, DEA
is often criticized for its deterministic, nonstatistical nature.
Schmidt (1985) phrased the criticism as follows:

“I am very skeptical of non-statistical measurement exer-
cises, certainly as they are now carried out and perhaps in
any way in which they could be carried out � � � � I see no
virtue whatever in a non-statistical approach to data.” p. 296

Banker (1993) was among the first to respond to
Schmidt’s critique by identifying conditions under which
DEA estimators are statistically consistent and have a
maximum likelihood (ML) interpretation. At present, the
formal statistical foundation of DEA estimators is well
established, including the asymptotic theory and rates of
convergence as well as methods for statistical inference
(see, e.g., Simar and Wilson 2008 for comprehensive sur-
veys of this work). In addition, extensions to DEA have
been proposed to improve its robustness to data errors and
outliers (e.g., stochastic DEA, DEA+, chance-constrained
DEA, and robust DEA frontiers, developed by Banker
et al. 1991, Gstach 1998, Cooper et al. 1996, and Daraio
and Simar 2007, respectively). However, these approaches
are still nonstatistical in the sense of Schmidt (quoted
above), and they do not allow for a genuine probabilis-
tic treatment of stochastic noise in the observed data.
Most importantly, a large conceptual and philosophical
gap remains between the mathematical-programming-based
DEA and the regression-based econometric approaches (cf.,
e.g., Cooper et al. 2004).

This paper contributes to bridging the conceptual gap
by demonstrating that DEA can be recast as least-squares
regression. More specifically, we show that the standard
(output-oriented, variable returns to scale) DEA model can
be formulated as nonparametric least-squares regression
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subject to shape constraints (monotonicity and concavity)
on the frontier and a sign constraint regarding the regres-
sion residuals. Whereas Banker (1993) has earlier shown
that DEA has an ML interpretation (cf. also Banker and
Maindiratta 1992), the least-squares interpretation estab-
lished in this paper is a new result that further enhances
the statistical foundation of DEA. It is worth emphasizing
that ML estimation generally requires the inefficiency terms
to be identically and independently distributed accord-
ing to some specific probability density function, whereas
least-squares estimation does not require such assumptions.
Moreover, although the ML interpretation of DEA applies
to a broad class of inefficiency distributions, its practical
usefulness is limited due to the classic incidental parame-
ters problem. As a result, the usual asymptotic properties
of ML estimators do not apply to DEA estimators (see
Schmidt 1985 and Banker 1993). By contrast, the direct
link between DEA and least-squares regression established
in this paper can be utilized in many ways in the non-
parametric statistical estimation of the axiomatic produc-
tion model, as will be demonstrated below. Further, this
result sheds new light on the connections between alter-
native frontier estimation techniques. Several connections
arise via this result; particularly, this result implies that
DEA can be obtained as a nonparametric generalization of
the classic parametric programming model by Aigner and
Chu (1968).

Applying these insights, we develop a new nonparamet-
ric variant of the correct ordinary least squares (COLS)
approach (Greene 1980). We call this new method Cor-
rected concave nonparametric least squares (C2NLS).
If the data-generating process is deterministic and the inef-
ficiency terms are identically and independently distributed,
our C2NLS method offers certain advantages to the tradi-
tional DEA. Whereas DEA spans the efficient frontier on
a few influential data points, C2NLS uses the information
in all observations for estimating the frontier. Thus, it is
less vulnerable to small-sample error. We show that the
estimates from C2NLS are consistent and asymptotically
unbiased, and yield smaller bias and mean-squared error
than the corresponding DEA efficiency estimators as the
dimensions of the input-output space increase beyond the
single-input, single-output case.

Although the C2NLS method is not designed for settings
where data are perturbed by stochastic noise, the evidence
from Monte Carlo simulations suggests that the efficiency
rankings obtained with C2NLS are generally more robust
to noise than the DEA rankings are, especially when the
variance of the noise component is relatively small com-
pared to the variance of the inefficiency component. In
this respect, we see the development of the least-squares
interpretation for DEA as a pivotal first step towards inte-
grating truly stochastic inefficiency and noise terms to the
nonparametric approach to productive efficiency analysis.
This line of research is pursued further in the follow-
up paper by Kuosmanen and Kortelainen (2007), which

departs from Step 1 of the C2NLS method to estimate the
conditional expected value of the inefficiency term in a
probabilistic fashion based on the distribution of nonpara-
metric least-squares residuals.

The remainder of this paper is organized as follows: §2
introduces the necessary notation and describes the CNLS
estimation method. In §3, the connection between DEA
and least-squares regression is established. Utilizing these
insights, the corrected nonparametric least-squares method
is introduced and discussed in §4. Section 5 presents some
evidence from Monte Carlo simulations. Section 6 gives
some concluding remarks. An exact description of the PP
and COLS models referred to in this paper is presented
in Online Appendix 1. Formal proofs of all mathemat-
ical theorems are presented in Online Appendix 2. An
electronic companion to this paper is available as part of
the online version that can be found at http://or.journal.
informs.org/.

2. Models of Production

2.1. Classification

Consider the standard multiple-input, single-output, cross-
sectional model in production economics:

yi = f �xi�+ �i ∀ i = 1� � � � � n� (1)

where yi denotes the output of firm i, f 
 �m
+ →�+ is the

production function that characterizes the production tech-
nology, xi = �xi1� � � � � xim�′ is the input vector of firm i,
and �i is the disturbance term that represents the deviation
of firm i from the frontier. Different models of productive
efficiency analysis can be classified according to how one
specifies the production function f and disturbances �i.

Generally, models are classified as parametric or
nonparametric depending on the specification of the pro-
duction function f . Parametric models postulate a priori
a specific functional form for f (e.g., Cobb-Douglas,
translog, etc.) and subsequently estimate its unknown
parameters. Nonparametric models assume that f satisfies
certain regularity axioms (e.g., monotonicity and concav-
ity), but no particular functional form is assumed.

Models can also be classified as neoclassical or
frontier depending on the interpretation of the distur-
bance term �i (cf., Kuosmanen and Fosgerau 2009). The
neoclassical model assumes that all firms are efficient and
disturbances �i are random, uncorrelated noise terms. Fron-
tier models typically assume that all deviations from the
frontier are attributed to inefficiency, which implies that
�i � 0 ∀ i = 1� � � � � n. For brevity, we omit the stochas-
tic frontier models (Aigner et al. 1977, Meeusen and
Vandenbroeck 1977), where �i are interpreted as compos-
ite error terms that include both inefficiency and noise
components (see, e.g., Kuosmanen 2006 and Kuosmanen
and Kortelainen 2007 for further discussion of stochastic,
nonparametric frontier models).
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Table 1. Classification of production models and the
linkages established in this paper.

Parametric Nonparametric

Central tendency OLS CNLS
Cobb and Douglas (1928) Hildreth (1954)

Hanson and
Pledger (1976)

Frontier; PP DEA
sign constraints Aigner and Chu (1968) Farrell (1957)

Timmer (1971) Charnes et al. (1978)

Frontier; 2-stage COLS C2NLS
estimation Winsten (1957) This paper

Greene (1980)

Table 1 combines the criteria described above to identify
six alternative model variants, together with some canoni-
cal references. On the parametric side, OLS refers to ordi-
nary least squares, PP means parametric programming,
and COLS is corrected ordinary least squares (see Online
Appendix 1 for details regarding PP and COLS). On the
nonparametric side, CNLS refers to convex nonparamet-
ric least squares (§2.2), DEA is data envelopment analysis
(§3), and C2NLS is a new approach called corrected convex
nonparametric least squares (§4). Although the traditional
parametric models are well established in productive effi-
ciency analysis, the nonparametric least-squares techniques
are less well known in this literature. Thus, a brief intro-
duction to CNLS is provided in the following subsection.

The original developments in this paper can be summa-
rized in terms of Table 1 as follows:

(1) We establish formal links between DEA and CNLS
regression, showing that DEA is a sign-constrained special
case of CNLS.

(2) As a corollary to this result, we find that DEA is a
nonparametric generalization of PP.

(3) We develop a new nonparametric generalization of
COLS, referred to as C2NLS.

2.2. Concave Nonparametric
Least Squares (CNLS)

Nonparametric regression techniques that do not require
any prior assumption about the functional form of the
regression function come in many varieties (see, e.g.,
Yatchew 1998, 2003 for a comprehensive survey). Nonpara-
metric least squares subject to continuity, monotonicity, and
concavity constraints arose from work by Hildreth (1954).1

Following Kuosmanen (2008), we refer to this approach
as concave nonparametric least squares (CNLS). CNLS is
based on the assumptions that the regression function f
to be estimated belongs to the set of continuous, mono-
tonic increasing, and globally concave functions, denoted
henceforth by F2, and the disturbances �= ��1 · · ·�n�

′ sat-
isfy the Gauss-Markov assumptions (i.e., E�� � X� = 0,
E���′ � X� = �2I, � < 	). Note that in contrast to max-
imum likelihood estimation, in least-squares estimation

� need not be identically and independently distributed
(i.i.d.); � are only assumed to be uncorrelated with inputs
X and with each other. Further, in contrast to the kernel
regression and spline-smoothing techniques, CNLS does
not require specification of any smoothing or bandwidth
parameters.

The CNLS problem is to find f ∈ F2 that minimizes the
sum of squared deviations, formally,

min
f ��

{ n∑
i=1

�2
i

∣∣∣∣yi = f �xi�+ �i ∀ i = 1� � � � � n� f ∈ F2

}
� (2)

Note that the family F2 includes an infinite number of
functions, which makes problem (2) a challenging infinite-
dimensional problem. Earlier single regressor CNLS algo-
rithms (e.g., Fraser and Massam 1989, Meyer 1999) require
that the data are sorted in ascending order according to the
scalar-valued regressor x. However, such sorting is not pos-
sible in the general multiple-regression setting where x is
a vector.

To estimate the CNLS problem (2) in the general
multi-input setting, Kuosmanen (2008) has shown that the
family F2 can be equivalently represented by a family of
piecewise-linear functions characterized by the celebrated
Afriat’s Theorem (Afriat 1967, 1972).2 More specifically,
we can model the values of f by using a system of sup-
porting hyperplanes, imposing the concavity constraint by
means of Afriat inequalities. Applying these insights, we
may rewrite the infinite-dimensional problem (2) as the
following finite-dimensional quadratic programming (QP)
problem:

min
�����




n∑
I=1

�2
i

∣∣∣∣∣∣∣

yi=�i+�′
ixi+�i ∀ i=1�����n�

�i+�′
ixi��h+�′

hxi ∀h� i=1�����n�

�i�0 ∀ i=1�����n




� (3)

The least-squares problems (2) and (3) are equivalent in the
sense that the optimal objective values of the two problems
are equal for any real-valued data set (Kuosmanen 2008).

In problem (3), the first constraint estimates �i and �i

parameters for each observation; thus, n different regres-
sion lines are estimated instead of fitting one regression
line to the cloud of observed points, as in OLS. Note
that by replacing the constraint �i � 0 ∀ i by constraints
�i = �j , �i = �j ∀ i� j = 1� � � � � n, we obtain the standard
OLS problem. These n estimated lines can be interpreted
as tangent lines to the unknown production function f .
The slope coefficients �i represent the marginal products
of inputs (i.e., the subgradients �f �xi�). The second con-
straint imposes concavity by applying a system of Afriat
inequalities; these inequalities are the key to modeling con-
cavity constraints in the general multiple-regressor setting.
The third constraint imposes monotonicity.

Given the estimated coefficients (�i��i) from (3), the
following explicit estimator of f can be constructed:

f CNLS�x�= min
i∈�1� ���� n�

��i +�′
ix�� (4)
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In principle, estimator f CNLS consists of n hyperplane seg-
ments, but in practice the estimated coefficients ��i��i� are
clustered to a relatively small number of alternative val-
ues: The number of different hyperplane segments is usu-
ally much lower than n.3 It is important to observe that if
we denote the set of functions that minimize the original
CNLS problem (2) by F ∗

2 , it becomes easy to show that
f CNLS ∈ F ∗

2 for any finite real-valued data set (Theorem 3.2
of Kuosmanen 2008).

The essential statistical properties of the CNLS estima-
tors are well understood. The maximum likelihood interpre-
tation of CNLS was noted by Hildreth (1954), and Hanson
and Pledger (1976) have proved its consistency. More
recently, Nemirovskii et al. (1985), Mammen (1991), and
Mammen and Thomas-Agnan (1999) showed that CNLS
achieves the optimal nonparametric rate of convergence
Op�n−4/�4+m��, where n is the number of observations and
m is the number of regressors (cf. Stone 1980). Imposing
further smoothness assumptions or derivative bounds has
been explored by Mammen (1991), Yatchew (1998), and
Mammen and Thomas-Agnan (1999). Groeneboom et al.
(2001) have derived the asymptotic distribution of a CNLS
estimator at a fixed point.

3. DEA as Nonparametric Least Squares
For a production function f estimated under the maintained
assumptions of monotonicity and concavity (i.e., the DEA
production function), the variable returns to scale (VRS)
DEA estimator of f can be formally defined as (Afriat
1972, Banker 1993)4

f DEA�x�

= max
�∈�n+

{
y

∣∣∣∣y =
n∑

h=1

�hyh� x�
n∑

h=1

�hxh�
n∑

h=1

�h = 1
}
� (5)

Multipliers �i are referred to as intensity weights (used for
constructing convex combinations of the observed firms).
Substituting f in (1) by the DEA estimator (5), we see that
the DEA efficiency estimate �DEA

i for firm i is obtained as
the optimal solution to the following linear programming
(LP) problem:

�DEA
i = min

���

{
�

∣∣∣∣yi =
n∑

h=1

�hyh + �� xi �

n∑
h=1

�hxh�

n∑
h=1

�h = 1� �h � 0 ∀h= 1� � � � � n

}
� (6)

Note that the DEA formulation (6) differs from the standard
output-oriented VRS DEA model by Banker et al. (1984)
in a subtle way. Whereas problem (6) is consistent with
the additive single-output specification of (1), Banker et al.
measure efficiency in the multiplicative form using the LP
problem (here adapted to the single-output setting)

�DEA
i = max

���

{
�

∣∣∣∣�yi �

n∑
h=1

�hyh� xi �

n∑
h=1

�hxh�

n∑
h=1

�h = 1� �h � 0 ∀h= 1� � � � � n

}
� (7)

The LP problem (7) is consistent with the radial Farrell out-
put efficiency measure. Despite the subtle difference in the
scale of measurement, formulations (6) and (7) are equiva-
lent in the following sense:

Lemma 3.1. In the single-output setting, the additive DEA
efficiency measure (6) is equivalent to the multiplicative
DEA efficiency measure (7) in the sense that

�DEA
i = 1− �DEA

i /yi ∀ i = 1� � � � � n� (8)

Both problems (6) and (7) measure efficiency relative to
the same DEA frontier characterized by (5).

To establish the least-squares interpretation for DEA, it
is first useful to recall the PP method developed by Aigner
and Chu (1968) (see Online Appendix 1). In essence, the
PP problem is the standard OLS problem augmented with
the additional sign constraint on the residuals. Although
the PP model is deterministic like DEA, it provides legit-
imate means for statistical estimation: Schmidt (1976) has
shown that PP provides maximum likelihood estimators if
the inefficiency terms � are identically and independently
distributed with the half-normal probability density (see
Online Appendix 1 for details).

As an obvious nonparametric counterpart to PP, we may
consider a sign-constrained variant of the CNLS problem,
formally,

min
�����




n∑
I=1

�2
i

∣∣∣∣∣∣∣∣∣∣

�i�0 ∀ i=1�����n�

yi=�i+�′
ixi+�i ∀ i=1�����n�

�i+�′
ixi��h+�′

hxi ∀h� i=1�����n�

�i�0 ∀ i=1�����n




� (9)

Comparing problems (3) and (9), we see that (9) is sim-
ply the sign-constrained variant of the CNLS problem. The
monotonicity and concavity assumptions on frontier f still
hold, but the Gauss-Markov assumptions on � are violated
due to the sign constraint in (9). In model (9) we do not
require that � are uncorrelated (we return to this point in
more detail in §4). On the other hand, we note that the QP
problem (9) differs from the classic PP model in that it does
not assume any particular functional form, but rather builds
upon the axioms of monotonicity and concavity, similar to
CNLS and DEA. In this sense, model (9) is a nonparamet-
ric generalization of PP. Interestingly, this hybrid model of
PP and CNLS is equivalent to the standard DEA model.

Theorem 3.1. For all real-valued data, the sign-
constrained nonparametric least-squares problem (9)
is equivalent to the DEA model (6) in the sense that
�DEA

i = �∗
i for all i = 1� � � � � n, where �∗

i , i = 1� � � � � n, are
obtained as the optimal solution to problem (9). Both
problems (6) and (9) measure efficiency relative to the
same DEA frontier characterized by (5).
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This result is important for several reasons. From a
methodological perspective, Theorem 3.1 elaborates and
further enhances the statistical foundation of DEA. As a
response to Schmidt’s (1985) critique, quoted in the intro-
duction, Banker (1993) has shown that �DEA

i are maximum
likelihood estimators for a broad class of inefficiency dis-
tributions, including the exponential and half-normal distri-
butions considered by Schmidt (1976, 1985). Interestingly,
whereas Banker’s results show that DEA has a statisti-
cal justification analogous to that of PP, our Theorem 3.1
implies that PP is in fact a constrained special case of DEA.
The connection between DEA and PP is evident from com-
paring formulation (9) with the PP formulation (A1.2) in
Online Appendix 1.

In our interpretation, Theorem 3.1 demonstrates that the
conceptual and philosophical barriers between DEA and
regression-based approaches are considerably lower than
what has been assumed before. Although DEA and regres-
sion analysis have been thought to be very different and
incompatible (see, e.g., Cooper et al. 2004, or Schmidt
1985, quoted in the introduction), it is possible to approach
DEA as a sign-constrained variant of nonparametric least-
squares regression. We hope that the established linkages
could contribute to the further integration of the parametric
and nonparametric approaches towards a unified framework
of productive efficiency analysis.

From a practical point of view, the development of
this connection opens up new avenues for integrating
tools from econometrics and the axiomatic, mathematical-
programming-based approaches. For example, DEA cur-
rently lacks a meaningful goodness-of-fit statistic. Given
the least-squares formulation derived in this paper, we
could apply the coefficient of determination from regres-
sion analysis, specifically,

R2 =
∑n

i=1�ŷi − ȳ�2∑n
i=1�yi − ȳ�2

= 1−
∑n

i=1��
DEA
i �2∑n

i=1�yi − ȳ�2

= 1−
∑n

i=1��1− �i�yi�
2∑n

i=1�yi − ȳ�2
� (10)

for measuring the proportion of output variation that is
explained by the DEA frontier. Although this variance
decomposition can be applied to any regression model,
including DEA, we must stress that, in contrast to OLS,
DEA does not maximize R2. Consequently, negative R2

values are possible for DEA estimators.
Some other promising developments expected from the

integration of econometric and the axiomatic, mathemat-
ical programming approaches include: (1) decomposition
of the error term in nonparametric models to distinguish
inefficiency from random noise in a probabilistic man-
ner (cf. Kuosmanen and Kortelainen 2007), (2) incorpo-
ration of variables exogenous to a firm in a single-stage
nonparametric model, (3) incorporation of multiple-output
extensions such as the stochastic distance function to mul-
tioutput DEA, and (4) incorporation of a method for sta-
tistical inference (hypotheses testing, confidence intervals)

available in the regression literature into the nonparamet-
ric efficiency analysis. Although these developments fall
beyond the scope of the present paper, none of these poten-
tially path-breaking improvements are possible without the
connection established in Theorem 3.1.

From a computational point of view, two points are worth
noting. First, observe that the DEA efficiency estimates are
obtained as the optimal �i from (9), not the squared val-
ues �2

i . Interestingly, replacing the squared terms �2
i by �i

in the objective function of (9) will not change the optimal
value; the least-squares criterion is equivalent to the least
absolute deviation (LAD) criterion in this sign-constrained
case. This is not generally true if we relax the sign con-
straint on �i as in (3). Second, the QP formulation (9)
computes the DEA efficiency measures for all firms simul-
taneously, whereas in DEA models (6) and (7) the effi-
ciency measures are solved separately for each firm in the
sample. In the conventional DEA setting, solving n small,
independent LP problems is typically faster and more eco-
nomical that solving a single large LP problem.5 However,
saving computation time is not our objective. Importantly,
we need to include all n firms into a single large problem if
we want to model interdependencies in the efficiency esti-
mates across firms (compare with Kuosmanen et al. 2006).
For example, note that the QP problem (3) that excludes
the sign constraint on residuals cannot generally be broken
down to independent subproblems.

Regarding generality of the result, we observe that The-
orem 3.1 is by no means restricted to the VRS technol-
ogy. By augmenting problem (9) with additional linear
constraints on the intercept terms �i, we can derive
analogous results for the other standard specifications of
returns to scale, including constant ��i = 0 ∀ i = 1� � � � � n ,
nonincreasing ��i � 0 ∀ i = 1� � � � � n , or nondecreasing
��i � 0 ∀ i = 1� � � � � n returns to scale. The result can also
be extended to the input-oriented efficiency measure and
the multioutput technology by rephrasing the model in the
single-input setting with an additive inefficiency term.

In conclusion, we have demonstrated that DEA can be
expressed as a sign-constrained CNLS problem, which gen-
eralizes the PP model by relaxing the parametric assump-
tion. Applying insights from Theorem 3.1, we may develop
nonparametric generalizations to other models established
in the parametric literature. The next section develops a
nonparametric generalization of the corrected ordinary least
squares (COLS) model.

4. Corrected Concave Nonparametric
Least Squares (C2NLS)

Corrected nonparametric least squares (C2NLS), to be
developed next, is a new nonparametric variant of the
COLS model in which nonparametric least squares sub-
ject to monotonicity and concavity constraints replace the
first-stage parametric OLS regression. The C2NLS model
assumes that the regression f is monotonic increasing and
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globally concave, the inefficiencies � are identically and
independently distributed (i.i.d.) with mean ! and a finite
variance �2, and that the inefficiencies � are uncorrelated
with inputs X. Note that the i.i.d. assumption on � implies
the following modified set of Gauss-Markov conditions:
E��−!1 �X�= 0 and E���′ �X�= �2I. These conditions
can be exploited for constructing an efficient least-squares
estimator.

Like COLS, the C2NLS method is implemented in two
stages, which can be stated as follows:

Stage 1: Estimate E�yi � xi� by solving the CNLS prob-
lem (3). Denote the CNLS residuals by �CNLS

i .
Stage 2: Shift the residuals analogous to the COLS pro-

cedure; the C2NLS efficiency estimator is

��C2NLS
i = �CNLS

i −max
h

�CNLS
h � (11)

where values of ��C2NLS
i range from �0�−	 with 0 indicat-

ing efficient performance. Similarly, we adjust the CNLS
intercepts �i as

��C2NLS
i = �CNLS

i +max
h

�CNLS
h � (12)

where �CNLS
i is the optimal intercept for firm i in (3) and

��C2NLS
i is the C2NLS estimator. Slope coefficients ��i for

C2NLS are obtained directly as the optimal solution to (3).
The key difference between COLS and C2NLS con-

cerns Stage 1, where COLS uses parametric OLS, whereas
C2NLS uses nonparametric CNLS. In this respect, COLS
can be seen as a restricted special case of C2NLS.

Concerning the statistical properties of C2NLS, we can
apply the results by Hanson and Pledger (1976) and Greene
(1980) to prove the following asymptotic result.

Theorem 4.1. For any sequence of independent observa-
tions X, y generated by production function f ∈ F2 and
identically and independently distributed inefficiency terms
�i � 0 that are uncorrelated with X and have a positive
density at �i = 0, the C2NLS efficiency estimator is statis-
tically consistent. Specifically,

lim
n→	 ��C2NLS

i = �i ∀ i = 1� � � � � n� (13)

Consistency is a generally desirable property for any effi-
ciency estimator. Consistency of DEA has been proven by
Banker (1993) and Korostelev et al. (1995), and consistency
of C2NLS is established in Theorem 4.1 above. The i.i.d.
assumption on inefficiency terms � made in Theorem 4.1 is
worth elaborating. Note that consistency of DEA estimators
(including the least-squares formulation (9)) requires that
the data set is a random sample of n independent obser-
vations, but the assumption of i.i.d. inefficiency terms is
not required; DEA allows � to be correlated with inputs
and/or with each other. However, the ML interpretation of
DEA (Banker 1993) does require the same i.i.d. assump-
tion as in Theorem 4.1. On the other hand, recall that the

CNLS estimator used in Stage 1 only requires that the inef-
ficiency terms � are uncorrelated with the inputs and with
each other. The somewhat stronger i.i.d. assumption made
in Theorem 4.1 is necessary for shifting the frontier in
Stage 2.

It is illustrative to briefly consider how possible vio-
lations of the assumptions on � stated in Theorem 4.1
would influence the performance of C2NLS. First, if E��−
!1 � X� �= 0, then the CNLS estimator used in Stage 1 is
biased and inconsistent, and the problems will carry over
to Stage 2. This is an example of the classic endogene-
ity problem, for which the standard solution is to resort
to instrumental variables that are correlated with inputs
but uncorrelated with inefficiency (e.g., Greene 2003). The
instrumental variables approach might be applicable to the
CNLS estimator. Second, if E���′ � X� �= �2 (i.e., inef-
ficiencies exhibit heteroskedasticity or serial correlation),
then the CNLS estimator used in Stage 1 remains unbiased
and consistent, but is likely inefficient. Moreover, ineffi-
ciency in Stage 1 estimation will likely cause downward
bias in Stage 2. If the covariance matrix E���′ � X� can
be consistently estimated, an efficient generalized least-
squares estimator (Greene 2003) could be adapted to CNLS
in a relatively straightforward fashion. Third, if inefficiency
terms � are uncorrelated but the i.i.d. assumption fails,
then the CNLS estimator used in Stage 1 will capture the
shape of the frontier correctly, but the inefficiency estimates
obtained in Stage 2 will likely overestimate the true inef-
ficiency. We test robustness of C2NLS estimators to these
types of violations by means of Monte Carlo simulations in
§5.3. More in-depth treatment of these types of violations
falls beyond the scope of the present paper, and is left as
an interesting topic for future research.

The DEA estimator is generally downward biased (e.g.,
Simar and Wilson 2000). In a small sample, the C2NLS
estimator may be biased, but the direction and the magni-
tude of the bias are difficult to predict. The CNLS estimator
used in Stage 1 is unbiased, even in a small sample. How-
ever, any estimation error in Stage 1 is likely to cause
upward bias in Stage 2. On the other hand, the maximum
CNLS residual (maxh �CNLS

h ) used in Stage 2 is a downward-
biased estimator of the expected inefficiency because the
most efficient firm in the sample may not be perfectly effi-
cient relative to the true frontier f . In a small sample, the
direction and magnitude of bias depends on the number of
input variables, curvature of the true frontier, distribution of
the sample firms, and other random factors. Of course, one
could apply bootstrapping methods for quantifying the pos-
sible bias and for correcting for the estimates, directly anal-
ogous to DEA (see, e.g., Simar and Wilson 1998, 2000).
Bootstrapping can be adapted to C2NLS in a straight-
forward fashion to draw statistical inferences, including
confidence intervals and hypothesis testing. Besides boot-
strapping methods, nonparametric statistical tests (such as
Kolmogorov-Smirnov) could be applied for hypothesis test-
ing in the C2NLS context (cf. Banker 1993).
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As the sample size increases, we can expect the bias
of C2NLS to diminish. In fact, Theorem 4.1 implies the
following asymptotic result.

Corollary to Theorem 4.1. Under the assumptions
stated in Theorem 4.1, the C2NLS efficiency estimator is
asymptotically unbiased, that is,

lim
n→	Bias� ��

C2NLS
i  = lim

n→	�E� ��C2NLS
i  − �i�= 0

∀ i = 1� � � � � n� (14)

In practice, the downward bias of DEA estimators can
hamper their discriminatory power. For example, in DEA a
firm that consumes the smallest amount of any input will
appear efficient by construction. However, in C2NLS, the
smallest input value does not immediately guarantee effi-
ciency. Typically, there is only a single efficient firm in
C2NLS (i.e., firm h= arg maxi��

CNLS
i �). Thus, we can prove

this formal result.

Theorem 4.2. For any real-valued data set, the discrimi-
natory power of C2NLS is always greater than or equal to
that of DEA in the sense that

��C2NLS
i � �DEA

i � 0 ∀ i = 1� � � � � n� (15)

It should be emphasized that the greater discriminatory
power of C2NLS does not say anything about the preci-
sion of the estimates; Theorem 4.2 only establishes that the
C2NLS method will always yield lower efficiency estimates
(i.e., higher degree of inefficiency) than the DEA method.
This result applies only to the absolute efficiency estimates;
the efficiency ranking of an arbitrary firm i may be higher
according to the DEA method than according to C2NLS.

We must also emphasize that the C2NLS method
assumes the data-generating process to be deterministic;
similar to standard DEA or the parametric PP and COLS
methods, it is not designed to noisy environments. In con-
trast to DEA, however, all observations influence the shape
of the C2NLS frontier. Thus, a single outlier located above
the true frontier does not distort the shape of the C2NLS
frontier as severely as in DEA. Further, C2NLS utilizes the
information that inefficient observations contain about the
frontier. If outliers are a concern, conditional quantile meth-
ods (e.g., Daraio and Simar 2007) could also be applied to
C2NLS.

In conclusion, C2NLS is a new nonparametric approach
to efficiency analysis in the deterministic setting. Besides
providing efficiency estimates, the new C2NLS approach
can be used for estimating shadow prices, setting perfor-
mance targets, and identifying benchmarks in a similar
fashion as the standard DEA. Many of the established tech-
niques from the DEA toolbox, such as returns to scale
modeling, weight restrictions, conditional quantiles, or sta-
tistical inferences through bootstrapping, can be directly
incorporated in the C2NLS framework as well. The next
section discusses the Monte Carlo evidence regarding the
comparison of several deterministic frontier estimation
methods.

5. Monte Carlo Simulations
This section describes simulation results that serve four
purposes: visualization, comparison of methods, investiga-
tion of the interaction of the error term, and investigation
of the effects of noise on the deterministic estimators. First,
we present a graph of frontiers constructed by DEA and
C2NLS methods to visualize C2NLS and its relative merits.
Second, four frontier methods are assessed based on bias
and mean squared error for six different scenarios. Third,
we examine the robustness of the frontier-shifting meth-
ods, COLS and C2NLS, to misspecification of interaction
of the error term with the production function, and consider
the additive and multiplicative error terms that are consis-
tent with the model assumptions of the shifting methods.
Finally, we investigate the performance of the same four
frontier methods when inefficiency is measured in the pres-
ence of noise.

5.1. Illustration

This subsection illustrates the frontiers estimated by DEA
and C2NLS. For this example, we assume a production func-
tion y = 3+ ln�x�−u and generate 50 observations where x
is randomly sampled from a uniform distribution Uni�1�10 
and u is a draw from a half-normal distribution with stan-
dard deviation of 0.7. Figure 1 graphically illustrates the
data (points x), the true frontier (thick grey curve), the
C2NLS frontier (thin black broken piecewise-linear curve),
and the DEA frontier (light grey broken piecewise-linear
curve). DEA and C2NLS estimate piecewise-linear fron-
tiers with five and three segments, respectively. We find that
both estimation methods produce good approximations of
the frontier for a production process using only one input to
generate one output. The results described in Theorem 4.2
can be seen because the C2NLS frontier has greater than or
equal output levels for all input levels. In short, both meth-
ods perform well, and C2NLS slightly underestimates the

Figure 1. Graphical illustration of DEA and C2NLS for
an example data set.
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frontier when averaged across all input levels, whereas DEA
underestimates the frontier for all input levels, with a larger
average deviation from the frontier.

5.2. Comparison of Frontier Estimation Methods

Next, we present a more systematic comparison of frontier
estimation methods in alternative simulated environments.
We restricted our analysis to PP, COLS, DEA, and C2NLS
considered above. A function linear in inputs is used for
PP and COLS. Table 2 describes the six simulated sce-
narios considered. Scenarios A and B represent a single-
input case with different production functions, Scenario C
involves two inputs, and Scenario D three inputs. Scenar-
ios E and F adjust the functional forms used in scenarios C
and D to increase the curvature in the frontier. For all sce-
narios, we tested three data set sizes of 50, 100, and 150
observations. The input data were randomly sampled from
Uni�1�10 , independently for each input and firm. Then,
the efficient output levels were calculated and a random
inefficiency term u∼

i.i.d.
�N�0�0�4�� was subtracted to obtain

the data used for the analysis. We ran 100 trials for each
combination of scenario and data set size to investigate the
relative performance of the four estimation methods.

Performance of each method is evaluated by two stan-
dard criteria: the mean-squared error (MSE) and the bias.
The MSE statistic is defined as

MSE =
M∑

t=1

n∑
i=1

�f̂ �xi�− f �xi��
2/nM� (16)

where f̂ indicates the estimated frontier production func-
tion identified by the particular method (e.g., DEA), and M
is the number of simulation runs (here M = 100). Similarly,
the bias statistic is calculated as

BIAS =
M∑

t=1

n∑
i=1

�f̂ �xi�− f �xi��/nM� (17)

Although the bias statistic indicates whether the estimated
frontier f̂ systematically underestimates (BIAS < 0) or
overestimates (BIAS > 0) the true frontier f , we note that
positive and negative deviations cancel out when averaged
over observations and simulation runs. The MSE statistic
measures precision of estimates in quadratic terms, assign-
ing equal weight to both positive and negative deviations.

Table 2. Description of the six scenarios—the additive
inefficiency case.

Scenario Inputs Functional form

(A) x y = ln�x�+ 3− u
(B) x y = 3+ x1/2 + ln�x�− u
(C) x1, x2 y = 0�1x1 + 0�1x2 + 0�3�x1x2�

1/2 − u
(D) x1, x2, x3 y = 0�1x1 + 0�1x2 + 0�1x3+ 0�3�x1x2x3�

1/3 − u
(E) x1, x2 y = 0�1x1 + 0�1x2 + 0�3�x1x2�

1/3 − u
(F) x1, x2, x3 y = 0�1x1 + 0�1x2 + 0�1x3+ 0�3�x1x2x3�

1/4 − u

Table 3 reports the MSE and bias statistics for the alter-
native methods in scenarios A–F. The first two columns
indicate the scenario and the sample size. The next four
columns indicate the MSE of the four methods considered.
The center column reports the fraction of trials in which
the MSE of the C2NLS method was smaller than the MSE
of the DEA method. The next four columns report the
bias statistics for each method. The final column presents
the fraction of trials in which the C2NLS method had a
smaller bias.

Scenarios A and B are single-input, single-output analy-
sis. Scenario B uses a slightly more complicated generating
function, resulting in a frontier that is less steep. How-
ever, even with the flatter frontier, the performances of the
shifting methods, COLS and C2NLS, are comparable to PP
and DEA based on a mean squared error (MSE) or bias
measure. The parametric methods are limited by the func-
tional form assumption for the single-input cases. As the
dimensionality of the model increases beyond trivial cases,
C2NLS consistently outperforms DEA. Also, all methods
are affected by the increase in dimensionality from a single
input to multiple inputs. However, the parametric assump-
tions of PP and COLS make these methods more robust to
the curse of dimensionality than their nonparametric coun-
terparts. When the number of inputs is increased from two
to three for scenarios C and D, the parametric methods
maintain similar performance, but the nonparametric mod-
els’ performance is negatively impacted. As the dimension-
ality increases and the number of observations decreases,
C2NLS outperforms DEA and is competitive with the para-
metric methods. Both nonparametric methods’ performance
is maintained as the curvature of the frontier is increased.

5.3. Test for Robustness Against Misspecification
of the Error Term Interactions

This section analyzes the same set of production functions
when the inefficiency term interacts in a multiplicative man-
ner. The parametric methods (PP, COLS) and the proposed
C2NLS method assume that the error terms (the ineffi-
ciency term in these deterministic cases) are independently
and identically distributed (i.i.d.). The multiplicative error
term violates this assumption, causing heteroskedasticity;
observations with larger input levels tend to be located fur-
ther from the frontier when measured in output units. This
should favor the DEA estimators that do not require the i.i.d.
assumption. We employed the same scenarios, data set sizes,
input, and efficiency generation process to investigate the
multiplicative interactions. Table 4 describes the six simu-
lation scenarios considered.

The same four estimation methods were evaluated under
the multiplicative inefficiency term specification, and the
criteria of MSE and bias were again used to quantify the
performance. In Table 5, we can observe that DEA outper-
forms C2NLS on the MSE performance measure for exper-
iments where the number of observations is large and the
number of dimensions of the analysis is small. However,
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Table 3. Relative performance of estimation methods for the additive error models based on MSE and bias performance
criteria.

Mean  squared  error Bias
Number Fraction of trials Fraction of trials

Scenario of obs. PP COLS DEA C2NLS DEA > C2NLS PP COLS DEA C2NLS abs(DEA) > abs(C2NLS)

(A) 50 0�042 0�044 0�009 0�005 0�76 0�105 0�129 −0�068 0�015 0�87
(A) 100 0�044 0�045 0�004 0�004 0�47 0�119 0�139 −0�040 0�034 0�62
(A) 150 0�045 0�047 0�003 0�004 0�49 0�125 0�145 −0�035 0�032 0�62

(B) 50 0�095 0�100 0�011 0�008 0�66 0�177 0�205 −0�074 0�028 0�81
(B) 100 0�101 0�104 0�005 0�006 0�46 0�193 0�218 −0�048 0�043 0�62
(B) 150 0�102 0�105 0�003 0�005 0�36 0�200 0�223 −0�038 0�038 0�52

(C) 50 0�022 0�029 0�032 0�013 0�95 0�053 0�095 −0�130 0�003 0�96
(C) 100 0�023 0�029 0�019 0�011 0�87 0�071 0�103 −0�092 0�039 0�83
(C) 150 0�024 0�030 0�013 0�009 0�72 0�079 0�113 −0�074 0�049 0�68

(D) 50 0�022 0�029 0�070 0�025 0�99 0�046 0�104 −0�207 −0�024 0�99
(D) 100 0�023 0�031 0�046 0�017 0�98 0�076 0�119 −0�162 0�023 0�97
(D) 150 0�025 0�033 0�035 0�015 0�97 0�092 0�129 −0�138 0�049 0�97

(E) 50 0�005 0�007 0�030 0�015 0�91 0�001 0�035 −0�121 0�018 0�94
(E) 100 0�004 0�006 0�016 0�011 0�85 0�019 0�041 −0�083 0�044 0�80
(E) 150 0�004 0�005 0�011 0�008 0�72 0�026 0�046 −0�068 0�046 0�71

(F) 50 0�008 0�010 0�061 0�022 0�99 −0�003 0�049 −0�191 −0�015 0�99
(F) 100 0�006 0�009 0�041 0�017 0�95 0�023 0�060 −0�148 0�038 0�94
(F) 150 0�006 0�009 0�030 0�013 0�94 0�034 0�064 −0�124 0�043 0�92

even with the misspecification of the inefficiency inter-
action, C2NLS dominates DEA for higher dimensionality
models. Again in higher dimensions, the relative robust-
ness of PP and COLS to the curse of dimensionality can
be observed.

On the measure of bias, the specification error increases
the positive bias of C2NLS in most scenarios. Neverthe-
less, the absolute bias of C2NLS is on average smaller than
that of DEA. Unlike the analysis of the additive production
functions, PP outperforms the other models on the basis of
bias for most scenarios.

Overall, the simulation analysis reveals that C2NLS is
likely to perform better than DEA as the ratio of obser-
vations to dimensionality of the model decreases. And, as
the complexity of production processes increases, involving
multiple inputs, the superiority of C2NLS becomes more
pronounced. The curse of dimensionality is observed in
this analysis because the nonparametric methods perfor-
mance deteriorates more quickly than the parametric meth-
ods as the dimensionality of the models grows. Also, we

Table 4. Description of the six scenarios—the multi-
plicative inefficiency case.

Scenario Inputs Functional form

(A) x y = �ln�x�+ 3�/�1+ u�
(B) x y = �3+ x1/2 + ln�x��/�1+ u�
(C) x1, x2 y = �0�1x1 + 0�1x2 + 0�3�x1x2�

1/2�/�1+ u�
(D) x1, x2, x3 y = �0�1x1 + 0�1x2 + 0�1x3+ 0�3�x1x2x3�

1/3�/�1+ u�
(E) x1, x2 y = �0�1x1 + 0�1x2 + 0�3�x1x2�

1/3�/�1+ u�
(F) x1, x2, x3 y = �0�1x1 + 0�1x2 + 0�1x3+ 0�3�x1x2x3�

1/4�/�1+ u�

observe that whereas misspecification of the interaction of
the inefficiency component worsens the performance of the
frontier-shifting methods (COLS, C2NLS), the same result,
C2NLS outperforming DEA as the ratio of observations to
dimensionality of the model decreases, is observed. As the
curvature of the frontier is increased, the performance of
C2NLS decreases slightly, but still continues to outperform
DEA. This makes a strong case for C2NLS as an alternative
method to consider when deciding among nonparametric
methods, particularly when realistic model sizes and data
availability are considered.

5.4. Estimating Frontiers in the Presence of Noise

In this subsection, we examine the robustness of PP, COLS,
DEA, and C2NLS methods to stochastic noise in data.
We emphasize that none of these methods are designed
for noisy environments, and none of these methods make
any attempt to quantify the magnitude of noise or adjust
the efficiency estimates for it. If the practitioner believes
that noise is a significant issue, we would not recommend
using any of these four methods, but rather choosing para-
metric SFA or nonparametric StoNED (Kuosmanen and
Kortelainen 2007). However, if the data are free from noise,
the four deterministic methods considered are likely to be
more efficient, in a statistical sense, than SFA or StoNED.
In practice, it is difficult to test whether or not data are per-
turbed by noise. Therefore, robustness to noise is a useful
property even for deterministic methods that are not explic-
itly designed for dealing with noise.

To generate noisy data, we modify scenario D of §5.2
by adding a random disturbance term v to obtain

y = f �x�− u+ v� (18)
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Table 5. Relative performance of estimation methods for the multiplicative models based on MSE and bias performance
criteria.

Mean squared error Bias
Number Fraction of trials Fraction of trials

Scenario of obs. PP COLS DEA C2NLS DEA > C2NLS PP COLS DEA C2NLS abs(DEA) > abs(C2NLS)

(A) 50 0�049 0�054 0�009 0�007 0�67 0�021 0�064 −0�069 0�024 0�82
(A) 100 0�045 0�054 0�004 0�005 0�44 0�057 0�093 −0�044 0�035 0�59
(A) 150 0�046 0�057 0�003 0�004 0�46 0�083 0�110 −0�035 0�034 0�55

(B) 50 0�115 0�156 0�011 0�008 0�75 0�035 0�116 −0�075 0�026 0�83
(B) 100 0�104 0�160 0�005 0�006 0�41 0�088 0�166 −0�048 0�041 0�59
(B) 150 0�108 0�167 0�004 0�005 0�41 0�127 0�191 −0�039 0�040 0�53

(C) 50 0�030 0�133 0�031 0�016 0�93 0�005 0�230 −0�126 0�029 0�94
(C) 100 0�025 0�149 0�019 0�010 0�87 0�040 0�280 −0�093 0�036 0�83
(C) 150 0�024 0�171 0�013 0�010 0�71 0�057 0�319 −0�074 0�058 0�62

(D) 50 0�044 0�118 0�065 0�025 0�98 −0�040 0�192 −0�201 −0�019 0�98
(D) 100 0�029 0�159 0�046 0�019 0�98 0�022 0�293 −0�161 0�038 0�98
(D) 150 0�026 0�169 0�034 0�015 0�96 0�045 0�320 −0�138 0�045 0�95

(E) 50 0�009 0�041 0�204 0�076 0�95 −0�024 0�113 −0�346 0�009 0�95
(E) 100 0�005 0�042 0�123 0�062 0�83 0�003 0�137 −0�253 0�101 0�80
(E) 150 0�005 0�049 0�090 0�076 0�69 0�013 0�160 −0�204 0�159 0�64

(F) 50 0�023 0�055 0�529 0�150 1�00 −0�060 0�112 −0�590 −0�097 1�00
(F) 100 0�010 0�069 0�338 0�116 0�97 −0�012 0�180 −0�452 0�087 0�96
(F) 150 0�008 0�070 0�249 0�124 0�88 0�005 0�196 −0�374 0�171 0�85

where

f �x�= 0�1x1 + 0�1x2 + 0�1x3 + 0�3�x1x2x3�
1/3� (19)

The data-generating process of u and v terms is controlled
through parameters �̃ = �u/�v (representing the signal-to-
noise ratio, not to be confused with the intensity weights
of DEA) and �2 = �2

u +�2
v , where �2

u ��2
v are the variances

of u and v, respectively. Setting �2 = 0�2 · Var�f �x� , we
consider five different levels of �̃. The first values 0.83
and 1.66 have been adopted from Aigner et al. (1977) to
represent very noisy environment (note: When �̃ < 1, the
noise term v has a larger variance than the inefficiency
term u). We then increase the value of �̃ in equal steps
until value 4.15, which represents a low-noise setting.

Table 6 reports the results from analyzing all four meth-
ods for varying levels of �̃. These results indicate that all
methods perform worse in the presence of noise, both in
terms of MSE and bias. Note that all four methods overesti-
mate the frontier in the case of heavy noise: Bias is positive

Table 6. Performance of four estimation methods as measured by MSE and bias performance criteria in a scenario with
noise [(18), (19)], sample size n= 100.

Scenario

Mean squared error (MSE) Bias
Fraction of trials Fraction of trials

Lambda PP COLS DEA C2NLS DEA > C2NLS PP COLS DEA C2NLS abs(DEA) > abs(C2NLS)

0.83 0�33 0�64 0�08 0�27 0�00 0�53 0�75 0�12 0�48 0�00
1.66 0�15 0�32 0�04 0�09 0�1 0�34 0�51 −0�02 0�26 0�01
2.49 0�09 0�25 0�04 0�05 0�42 0�24 0�45 −0�08 0�17 0�2
3.32 0�06 0�2 0�04 0�03 0�78 0�2 0�39 −0�12 0�1 0�57
4.15 0�06 0�18 0�04 0�03 0�85 0�18 0�37 −0�13 0�09 0�72

when �̃= 0�83. Interestingly, the nonparametric approaches
consistently outperform the parametric counterparts. Good
performance of DEA is largely explained by the fact that
the outliers generated by the noise term v (which cause pos-
itive bias to all four methods) serve to offset the small sam-
ple bias of DEA (i.e., the systematic negative bias observed
in Tables 3 and 5). This offsetting effect also explains the
low MSE of DEA. As �̃ grows larger (low-noise scenarios),
the small sample-bias dominates, and C2NLS outperforms
DEA in both MSE and bias.

The MSE and bias statistics refer to the estimated versus
true frontier. In the stochastic setting, good performance
in estimating the frontier does not yet guarantee that the
efficiency estimates and efficiency rankings are robust to
noise. To assess robustness of efficiency rankings, the rank
correlations between the estimated and true inefficiency
terms u were computed for DEA and C2NLS. These results
are presented in Table 7. We observe that C2NLS outper-
forms DEA by rank correlation in virtually all cases. On
average, the efficiency rankings obtained with C2NLS are
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Table 7. Performance of DEA and C2NLS as measured
by rank correlation, the noisy scenario (18),
sample size n= 100.

Scenario

Rank correlation
Fraction of trials

Lambda DEA C2NLS DEA > C2NLS

0.83 0�26 0�37 0�04
1.66 0�43 0�58 0�00
2.49 0�50 0�70 0�00
3.32 0�55 0�76 0�00
4.15 0�59 0�79 0�00

more closely correlated with the true efficiency rankings
than the rankings obtained with DEA. Although the C2NLS
efficiency estimates are likely to underestimate the true effi-
ciency levels due to outliers (causing the positive bias in
Table 6), the efficiency rankings from C2NLS are relatively
robust to small and medium-sized noise.

In conclusion, the presented simulation results indicate
that the proposed C2NLS method is a competitive alternative
for the existing parametric and nonparametric techniques
when there is little or no noise in the data. As evident from
the simulations, the main advantage of C2NLS compared to
DEA is its robustness to small-sample error, which is par-
ticularly beneficial when the sample size is small compared
to the number of inputs (the curse of dimensionality). We
have also examined robustness of C2NLS to heteroskedas-
ticity and stochastic noise. If the variance of noise is rel-
atively small compared to that of inefficiency, C2NLS can
yield more robust efficiency rankings than DEA. If the data
is expected to be very noisy, methods that explicitly account
for noise (such as SFA or StoNED) would be preferred.

6. Conclusions
We have presented a new least-squares interpretation of the
DEA model. It was shown that DEA can be recast as non-
parametric least-squares regression subject to shape con-
straints on the frontier and sign constraints on residuals.
This connection between DEA and least-squares regres-
sion further contributes to developing the statistical foun-
dation of DEA, opening up new ways for adapting and
integrating econometric techniques to DEA. Next, the par-
allel development of parametric and nonparametric mod-
els was outlined. We showed that Aigner and Chu’s (1968)
parametric programming model is a constrained special case
of DEA in which a functional form for the production func-
tion is assumed. The parallel development of parametric and
nonparametric models was further extended by the introduc-
tion of C2NLS and the linkage between COLS and C2NLS
was established.

Performance of the new C2NLS method was investi-
gated via Monte Carlo simulation. The results indicated that
C2NLS performs at least as well as DEA in cases when the
data-to-dimension ratio is relatively high, and significantly

outperforms DEA as this ratio falls. Both additive and
multiplicative error specifications were considered, with
C2NLS proving robust to either specification. Consistency
and asymptotic unbiasedness of the C2NLS efficiency esti-
mator are established, but the properties of the C2NLS
estimator would clearly warrant further research. In con-
trast to DEA, the C2NLS frontier uses the information con-
tained in both efficient and inefficient observations, and
thus is expected to be less sensitive to outliers and extreme
observations.

We believe that our findings, combining insights from
the econometric and operations research domains, promote
the development of a unified framework for productive effi-
ciency analysis. The results we have described create the
foundation for the development of a truly nonparametric
stochastic efficiency model. By linking the nonparametric
frontier estimation methods to regression, an error term
with a stochastic component can be specified, similar to the
stochastic frontier model of Aigner et al. (1977). Applying
these results to the general multioutput setting provides a
challenging opportunity for future research.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. Interestingly, Hildreth illustrated his method by estimat-
ing production function for cotton production using data
from field experiments. While Hildreth focused on esti-
mating the neoclassical production function rather than the
best-practice frontier, his nonparametric approach based on
shape constraints (monotonicity and concavity) is directly
analogous to Farrell (1957) and Afriat (1972). Although
there is no evidence that Hildreth’s (1954) article inspired
subsequent work by Farrell, Afriat, and others, the results
established in this paper imply that Clifford Hildreth
deserves to be recognized as one of the predecessors to the
modern DEA.
2. Afriat’s Theorem has been analogously applied for
nonparametric estimation in Banker and Maindiratta (1992)
and Matzkin (1994).
3. Simulation results investigating the number of
hyperplanes generated can be found in Kuosmanen (2008).
4. We liberally use both sum operators and scalar products
in the same equations because strict adherence to either con-
vention would make the notation of this paper unnecessarily
cryptic.
5. See Kalvelagen (2004) for a more complete discussion
of computational issues related to similar formulations.
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