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a b s t r a c t

Model misspecification has significant impacts on data envelopment analysis (DEA) efficiency estimates.
This paper discusses the four most widely-used approaches to guide variable specification in DEA. We
analyze efficiency contribution measure (ECM), principal component analysis (PCA-DEA), a regression-
based test, and bootstrapping for variable selection via Monte Carlo simulations to determine each
approach’s advantages and disadvantages. For a three input, one output production process, we find that:
PCA-DEA performs well with highly correlated inputs (greater than 0.8) and even for small data sets (less
than 300 observations); both the regression and ECM approaches perform well under low correlation
(less than 0.2) and relatively larger data sets (at least 300 observations); and bootstrapping performs rel-
atively poorly. Bootstrapping requires hours of computational time whereas the three other methods
require minutes. Based on the results, we offer guidelines for effectively choosing among the four selec-
tion methods.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric frontier estimation evaluates production units’
relative efficiency in both multiple input and multiple output pro-
duction settings. The method in widest use is data envelopment
analysis (DEA), popularized by Charnes et al. (1978). DEA itself
does not provide guidance for the specification of the input and
output variables; rather, they are left to the user’s discretion, judg-
ment and expertise. However, several issues may arise when
selecting variables, e.g., the unavailability of data, high dimen-
sional production processes, and the inclusion of irrelevant inputs
or outputs. This paper examines the latter issue, reviews eight var-
iable selection methods to identify the relevant variables, and of-
fers guidelines for choosing the most appropriate method.

Sexton et al. (1986) and Smith (1997) demonstrate that model
misspecification has significant impacts on DEA efficiency esti-
mates. Sexton et al. consider three different scenarios to investigate
the impact of inclusion of a variable in the production function:
including an additional input variable; including an additional ran-
dom input; and selecting inputs based on statistical significance.
They show that efficiency estimates cannot lessen when adding
either more inputs or outputs, but a variable can change the shape
and position of the frontier which in turn alters the ranking of effi-
ciency estimate. Using Monte Carlo simulations, Smith analyzes
model misspecification issues considering sample size, number of
inputs, correlation between inputs, and variation in importance of

input to the production process. He concludes that model misspeci-
fication has a more severe impact on efficiency estimates when the
data set contains fewer observations. Dyson et al. (2001) show that
the omission of a highly correlated variable can have a significant
impact on the efficiency estimates of some production units because
DEA generally is not translation invariant.1

Further, variable selection methods are important because DEA
is a non-parametric approach and loses discriminatory power as
the dimensionality of the production space increases. As the num-
ber of inputs and outputs increases, the observations in the data set
are projected in an increasing number of orthogonal directions and
the Euclidean distance between the observations increases. This
results in many observations lying on the frontier; thus DEA loses
its discriminatory power. An insightful discussion on the curse of
dimensionality can be found in Fried et al. (2008).

The literature proposes several methods to address the issues of
determining relevant variables. All approaches are statistical in
nature. Our own literature survey identifies eight methods, four
of which have already been compared against each other by
Sirvent et al. (2005) and Adler and Yazhemsky (2010), and thus
we omit them from this paper. The four remaining methods to
be analyzed are: efficiency contribution measure by Pastor et al.
(2002), PCA applied to DEA by Ueda and Hoshiai (1997) and Adler
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1 Pastor (1996) defines a DEA envelopment model as translation invariant ‘‘if, given
any problem and constructing a new (problem) by translating the original input and
output values, it happens that the new problem has exactly the same optimal solution
as the old one’’. See Pastor (1996) for a complete discussion of specific scenarios in
which DEA is/is not translation invariant.
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and Golany (2001), a regression-based test by Ruggiero (2005), and
Bootstrapping for variable selection by Simar and Wilson (2001).

This paper is organized as follows. Section 2 presents our liter-
ature survey and why we favor four specific methods. Section 3
investigates the four methods under different scenarios via Monte
Carlo simulations. Section 4 discusses the appropriateness and the
limitations of the four methods as well as the severity of the limi-
tations and their effects on DEA estimates. Section 5 develops our
guidelines for choosing a variable selection method and gives our
general conclusions.

2. Literature review

Our literature survey on variable selection in DEA identifies
eight methods. This section gives an overview of each method
and explains why we evaluate efficiency contribution measure,
PCA-DEA, regression-based tests, and bootstrapping for variable
selection.

1. Efficiency contribution measure (ECM): Pastor et al. (2002)
develop a method for analyzing the relevance of a variable based
on its contribution to efficiency. See Chen and Johnson (2010) for
an application of ECM. The variable being tested is called the can-
didate. Two DEA formulations are considered, one with the can-
didate variable and one without it. A binomial statistical test
determines if the effect of this variable on the efficiency measure
indicates that the candidate variable is important to the produc-
tion process. Two approaches are defined next: forward selection
(addition of variables) and backward elimination (removal of
variables). The forward selection procedure is evaluated in the
Monte Carlo analysis in Section 3.

2. Principal component analysis (PCA)-DEA: Ueda and Hoshiai
(1997) and Adler and Golany (2001) independently develop prin-
cipal component analysis-DEA (PCA-DEA). A general statistical
method used to reduce the dimensionality of the data set by
expressing the variance structure of a matrix of data through a
weighted linear combination of variables. Each principal compo-
nent (obtained from the weighted linear combination of original
variables and ordered in decreasing order of percentage vari-
ance) accounts for maximal variance while remaining uncorre-
lated with the preceding principal components. Adler and
Golany (2002) give a separate PCA-DEA mathematical formula-
tion to obtain the efficiency estimates in which the principal
components replace the original variables. In this method, a per-
centage of the information is retained from each of the original
variables, thus improving the discriminatory power of DEA.

3. A regression-based test: Ruggiero (2005) suggests a variable
selection approach in which an initial measure of efficiency is
obtained from a set of known production variables. Efficiency
is then regressed against a set of candidate variables; if the
coefficients in the regression are statistically significant and
have the proper sign (coefficient values should be positive for
inputs and negative for outputs), the variables are relevant to
the production process. This analysis is repeated, identifying
one variable at a time. The analysis stops when there are no fur-
ther variables with significant and properly signed coefficients.

4. Bootstrapping for variable selection: Simar and Wilson (2001)
discuss a statistical procedure to test the relevance of removing
input and output variables as well as the potential for aggrega-
tion. Test statistics are calculated and a bootstrap estimation
procedure is used to obtain the critical values for these tests.

5. Banker (1996) lists three statistical tests to indicate the signifi-
cance of an input or output variable to the production process.
The null hypothesis is that the variable being tested does not
influence the production process. Simulation studies are

conducted and the results indicate that these tests perform as
well as or better than COLS-based tests (Olson et al. (1980)).
This is true even when the parametric frontier form used in
COLS estimation is identical to the one used to generate the
simulated data.

6. Fanchon (2003) suggests a recursive method to determine the
variables to be included. A five-step approach determines the
variable set that best explains output behavior, followed by
using DEA iteratively to analyze the increase in the number of
efficient observations. To validate the included variables, two
more regressions are performed, one with only efficient obser-
vations and the other with both efficient and inefficient obser-
vations. In each, a high statistical significance of regression
coefficients indicates a valid input variable.

7. Jenkins and Anderson (2003) propose a variable reduction
method that omits the variables containing minimum informa-
tion using partial correlation as a measure of information con-
tent. Information in an input or output variable is measured
as the variance over a set of production units; zero variation
indicates all observed production units have the same value
for that variable. The authors show that omitting highly corre-
lated variables can have a major influence on efficiency scores,
and thus the multivariate statistical approach using partial cor-
relation measures is useful to determine the relevance of a
given variable.

8. Dario and Simar (2007) aggregate highly correlated inputs and
outputs to reduce the dimensionality of the production possi-
bility space to a single input and a single output using
eigenvalues.

Other methods in our literature survey include analyzing the
average change in efficiency scores, trying different model specifi-
cations, and so forth. These methods are not as statistically rigor-
ous, and hence are not considered in this paper. Readers can
refer to Lewin et al. (1982), Golany and Roll (1989), Norman and
Stoker (1991), Valdmanis (1992), Sigala et al. (2004), and Wagner
and Shimshak (2007).

Previous work has compared subsets of these methods. Sirvent
et al. (2005) compare Pastor et al.’s efficiency contribution measure
method to Banker’s hypothesis tests using Monte Carlo simulation.
The results show that ECM is more robust to the specification of
inefficiency distribution and the type of returns to scale assump-
tion; thus, we do not consider Banker’s hypothesis test. Since Fan-
chon’s (2003) regression-based approach is similar to Ruggiero’s
method and includes a variety of additional ad-hoc complications
with little indication of the motivation, we do not include it in
the Monte Carlo simulation comparison below. Adler and Yazhem-
sky (2010) show that PCA-DEA performs better than the variable
reduction technique by Jenkins and Anderson (2003) in particular
when analyzing small data sets. They find that PCA-DEA never pro-
duces less accurate results when compared to Jenkins and Ander-
son. The primary drawback of the variable reduction method,
however is that it discards an entire variable whereas PCA-DEA re-
tains a certain amount of information from all variables. Lastly, the
Dario and Simar method is very similar to PCA-DEA, but requires
that the final model to have only a single input and a single output;
thus it is not as general as the other methods and is of little prac-
tical use. In conclusion, we choose ECM, PCA-DEA, Ruggiero’s
regression method (referred to as RB), and the bootstrap approach
(referred to as BS) for comparison below.

3. Monte Carlo simulations

Monte Carlo simulations let us compare the performance of our
four chosen variable selection methods to a known truth. We
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calculate true efficiency from a known production function.2 We
identify one input and one output as belonging in the production
function, and then we apply the four methods iteratively to test a
set of relevant and irrelevant variables to determine a final set of in-
puts for each method. Finally, we use the set of input variables iden-
tified by each method to estimate efficiency via DEA and compare
the estimates with the true efficiency levels to measure the accuracy
of the variable selection methods.

We generate three inputs (x1,x2 and x3) and an inefficiency term
(u) and use them in a Cobb–Douglas production function to gener-
ate an output (y). Eq. (1) is the production function used in the data
generating process. A single output production function allows us
to compare the four methods. The values for the inputs are inde-
pendently generated from a uniform distribution on the interval
(10,20). The inefficiency term is half-normal with mean zero and
the variance (r2) which we vary to obtain an average efficiency
score of 85%. Exponents a, b and c define both the returns to scale
(RTS) specification and the contribution of each input to output.
We independently generate a random variable (x4) from a uniform
distribution in the interval (10,20) to maintain symmetry with the
other inputs. Note that this variable is not part of the production
process and therefore is irrelevant.

y ¼ xa
1xb

2xc
3e�u: ð1Þ

To establish the correlation between inputs we adopt the following
equation from Wang and Schmidt (2002).

xi ¼ qxj þw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
i ¼ 2;3;4 j ¼ 1;2;3 i – j: ð2Þ

Here, q is the correlation between xi and xj; w is a random variable
generated from a uniform distribution in the interval (10,20).

To perform the simulation analysis, we define a base case sce-
nario with a = b = c = 1/3 and independently generate the input
variables. The values of a, b, and c represent their contributions
to output and are set equal to each other to impose symmetry.
When the sum of the exponents on the inputs is one, this indicates
a constant returns to scale (CRS) production process. The number
of observations equals 100. We test the basic variable set consist-
ing of (y,x1,u) and, x2, x3 and x4 (herein referred to as candidate
variables) using the four methods to determine the model specifi-
cation. We also derive thirteen other experimental scenarios from
the base case. These include varying: the correlation among inputs,
the correlation between random variable and the inputs, the num-
ber of observations in the dataset, the RTS specification, the dimen-
sionality changes and a different inefficiency distribution. Table 1
summarizes the experiments.

Table 2 reports the values of the parameters for the four meth-
ods. Recall that we select the values based on the literature origi-
nally introducing each method. We keep these same values
throughout the Monte Carlo simulations.3

Having specified the input variables via the four methods, we
use the output-oriented CRS measure in (3) to obtain the results
presented in Section 4.

max
h;k

h : �yi þ Yk P 0; hxi � Xk P 0; k P 0; h free: ð3Þ

In experiment 11 we generate the data from a VRS production func-
tion. Thus (3) is augmented with the additional convexity con-
straint, and the results of the augmented model are reported, see
Banker et al. (1984).

3.1. Efficiency contribution measure (ECM)

For ECM, a candidate variable is considered relevant to the pro-
duction process if more than P0% of the production processes have
an associated efficiency change greater than �q. Therefore, we select
p0 = 15% and �q ¼ 10% following the recommendation of Pastor
et al. (2002). ECM is formulated as a hypothesis test with a bino-
mial test statistic. Following Pastor et al., a significance level (a)
of 5% is set. If the test statistic is less than the null hypothesis is re-
jected and a candidate variable is considered to be part of the pro-
duction process. A forward selection procedure is used and initially
input x1 and output y are included in the production function, all
candidate variables are tested, and the variable with the lowest
test statistic below the a value is added to the production model.
The ECM is repeated on the new candidate set with one less vari-
able. The process stops when all candidate variables have a test
statistic larger than a, or no variables remain in the candidate set.

Table 1
List of experiments and their significance.

Experiment Correlation (q) Input contribution to output Details of the experiment

1 Independently generated a = b = c = 1/3 Base case, n = 100
2 qx1x2

¼ 0:8;qx1x3
¼ 0:2 a = b = c = 1/3 Correlated inputs

3 qx1x2
¼ 0:8;qx1x3

¼ 0:8 a = b = c = 1/3 Highly correlated inputs
4 Independently generated a = 1/3, b = 4/9, c = 2/9 Input contribution to output varied
5 qx1x2

¼ 0:8;qx1x3
¼ 0:2 a = 1/3, b = 4/9, c = 2/9 Correlated inputs and input contribution to output varied

6 qx1x2
¼ 0:8;qx1x3

¼ 0:2 a = 1/3, b = 2/9, c = 4/9 Correlated inputs + different input contribution to output
7 qx1x4

¼ 0:8 a = b = c = 1/3 Correlated input and random variable
8 qx1x4

¼ 0:8 a = b = c = 1/3 Correlated candidate input and random variable
9 Independently generated a = b = c = 1/3 Small sample size, n = 25
10 Independently generated a = b = c = 1/3 Large sample size, n = 300
11 Independently generated a = b = c = 1/4 Base case with VRS
12 Independently generated a = b = c = d = 1/4 Base case with one more relevant inputx5

13 Independently generated a = b = 1/2 Base case without relevant inputx3

14 Independently generated a = b = c = 1/3 Base case with exponential inefficiency distribution

Table 2
Parameter values used in the experiments.

Method Parameter value

ECM p0 ¼ 0:15; �q ¼ 1:10;a ¼ 0:05
PCA-DEA Information retained from the variables = 80%
RB Confidential Interval = 90%
BS a = 0.05

2 Also termed the data generation process.

3 We observe that methods to determine values of the parameters based on the
characteristics of the data set are not currently available in the literature; this is
perhaps a useful area for further research.
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3.2. Principle component analysis (PCA-DEA)

As mentioned, we consider the PCA-DEA formulation developed
by Adler and Golany (2002). The principal components (PCs) explain
the population variance, which makes it possible to replace the ori-
ginal variables with minimum loss of information, thereby reducing
the dimensionality of the production function. Irrespective of the
correlation between variables, the inefficiency distribution, and
the type of production process, Adler and Yazhemsky (2010) suggest
that 80% (76%) of retained information for the CRS (VRS) case pro-
vides a good approximation to the efficiency classification. After set-
ting the PCs in decreasing order of percentage variance, we select the
set describing 80% of the variation. The experiments in Table 1 as-
sume that x1 is a known input in the production process. Hence,
we keep x1’s original values, and include the candidate variables in
PCA which retains 80% of the information.

3.3. Regression-based test (RB)

For the regression-based test, Ruggiero (2005) states: if a poten-
tial input is omitted from the DEA model then that input will be
positively correlated with the measured efficiency, in this case re-
run the DEA model with that variable included. We implement this
rule using the regression model:

TE ¼ aþ b2x2 þ b3x3 þ � � � þ bmxm þ e; ð4Þ

where TE is the technical efficiency as given by DEA including only y
and x1, and x2 through xm are the potential inputs that could have
been included in the production function. Thus, we obtain TE with-
out the xi variables; only if the parameters bi are greater than zero
and statistically significant at a given level of significance is xi added
to the model. Ruggiero suggests that a 90% confidence interval leads
to best results and hence we employ a 90% significance level in the
Monte Carlo analysis in Section 4. We are cautious since Ruggiero
notes this method may not perform well in the presence of correla-
tion among the input candidate variables.4 We regress the efficiency
estimates from the basic set of variables, input xi and output y,
against the candidate variables. The procedure stops if no variable
is found significant. If more than one significant variable is found,
then all variables identified are added. The new efficiency score ob-
tained with the inclusion of the new input variable (s) in the DEA are
calculated and the candidate set, which is now smaller, is tested. We
repeat the process until all candidate variables are either found irrel-
evant or included and no variable remains to be tested.

3.4. Bootstrapping for variable selection (BS)

The BS method indicates if a variable significantly contributes to
the output level and thus influences the estimates of efficiency. Si-
mar and Wilson suggest several test statistics; we use (5):

c12ðsnÞ ¼
Xn

i¼1

d1i

D0ðx0i; yiÞ

� �2

P 0; ð5Þ

d1i ¼ D0ðxi; yiÞ � D0ðx0i; yiÞ; ð6Þ

where D0 is the distance function obtained as the inverse of the out-
put-oriented DEA formulation with (x,y) as the input–output set.
Set (xi,yi) refers to the complete set of inputs and outputs including
the candidate variable, and ðx0i; yiÞ refers to the reduced set without
the candidate variable. We test the hypothesis that the production
function does not contain the candidate variable in the production
process. The test statistic is calculated using the full population n

production processes. We use the bootstrap to draw independent
and identically distributed (iid) samples of n observations by sam-
pling with replacement from the population n and repeatedly esti-
mating (6) and (5) for each sample of n to construct an empirical
estimate of the distribution of c12(sn). With this distribution we
can identify the p-values associated with the 5% significance level
(a). A test statistic less than the p-value indicates both a rejection
of the null hypothesis and the inclusion of the tested variable in
the production function. We implement the heterogeneous boot-
strap algorithm proposed in Simar and Wilson (2000) to generate
the bootstrap efficiency estimates. Simar and Wilson (2001) devel-
op six similar test statistics and find they all work equally well; we
choose one that resembles minimizing the variance in efficiency
estimates (see Simar and Wilson (2001) for a complete set of test
statistics and a detailed explanation). A forward selection procedure
is used and initially input x1 and output y are included in the pro-
duction function and all candidate variables are tested. If an itera-
tion of BS selects more than two variables, we include the most
significant variable. We repeat the iterations until all candidate
variables are either found irrelevant or included and no variables
remain in the candidate set.

4. Results and analysis

For our Monte Carlo simulations we use MATLAB on an IBM p5-
575 cluster, 64-bit, AIX 5.3 operating system. Table 3 gives the re-
sults. Pearson’s correlation and mean square deviation are reported
as a means of comparison for the four methods. Here, correlation
coefficient and mean square deviation are calculated for each
method relative to the true efficiency estimates and the average
is taken over the 1000 trials. Table 4 shows the run times for the
four methods with 100 observations for one trial.

Table 3 shows that while the four methods perform well under
different experiments, no method dominates. In experiment 1,
there is no correlation defined among inputs and ECM and RB per-
form better than PCA-DEA. A limitation of PCA-DEA is the impossi-
bility of exactly recovering the efficiency levels, since the method
defines only an 80% information retention level. Observe that the
correlation between inputs has a definite impact on the perfor-
mance of the four methods. For large sample sizes (300 observa-
tions as shown in experiment 10), the other methods are
superior to PCA-DEA (see Section 4.3 for a discussion of sample
size). Table 4 shows that PCA-DEA has the shortest run time due
to its non-iterative characteristic.

BS necessitates the selection of a bandwidth parameter, which
requires a considerable computational effort. Simar and Wilson
(2000) suggest the normal referencing rule to reduce the computa-
tional burden. However, even when using the normal referencing
rule, the BS algorithm results in a run time greater than 30 hours
for experiments including 20 trials and 200 bootstrap replications.
We perform an initial set of trial runs to determine the number of
bootstrap replications, and expect to see a tradeoff between run
time and performance. However, we find nothing substantial by
studying the relationship between number of bootstrap replica-
tions and the correlation to true efficiency or mean square devia-
tion (see Fig. 10). The graphs in the following sections provide
further insights into the remaining three methods when BS is ex-
cluded not only to modest results in the initial analysis, but also
because of its computational burden.

4.1. Impact of variations in correlations between inputs (qx1x2
and

qx1x3
)

Fig. 1 shows that when qx1x2
and qx1x3

are varied (Experiment 3),
PCA-DEA significantly outperforms the other two methods. We

4 Many of the experiments explored in this paper consider correlation; however, it
is interesting to investigate Ruggiero’s comment in quantitative terms to understand
how his method is affected when correlation is present.
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conclude that PCA-DEA is robust to correlation between inputs,
whereas ECM performs well for both low correlation (0.5) and high
correlation (0.9). RB performance improves as correlation in-
creases. Also, when the correlation between inputs varies along

with the input contribution to output (Experiment 5), Fig. 2 shows
that PCA-DEA performs better than the other two methods (RB per-
forms worst).

Figs. 3 and 4 show the percentage inclusion (number of times
the candidate variable is included out of 1000 trials) as a part of
the production process via RB and ECM. Since PCA-DEA replaces
the original variables with PCs it is not possible to obtain this infor-
mation. Referring to Fig. 3, as the correlation between input in-
creases, RB results in misspecification since and are not identified
as part of the production process.

In experiment 5 (refer to Fig. 4), ECM chooses more x2 and x3

less as correlation increases. From the definition of experiment 5,
the input contribution of x2 is greater than that of x3 and hence
ECM selects the input with the larger contribution to output. How-
ever this is not true for RB where both x2 and x3 are included fewer
times as correlation increases.

Table 3
Performance of variable selection methods.

Experiment Correlation coefficient Mean square deviation

ECM PCA-DEA RB BS⁄ ECM PCA-DEA RB BS⁄

1 0.9992 0.9842 0.9965 0.9252 0.0001 0.0008 0.0005 0.0101
2 0.9645 0.9875 0.9404 0.9465 0.0040 0.0006 0.0133 0.0073
3 0.9587 0.9853 0.8770 0.9166 0.0048 0.0007 0.0407 0.0175
4 0.9876 0.9846 0.9922 0.9008 0.0012 0.0008 0.0008 0.0134
5 0.9593 0.9876 0.8855 0.896 0.0044 0.0006 0.0363 0.0192
6 0.9747 0.9876 0.9726 0.9769 0.0025 0.0006 0.0034 0.0025
7 0.9995 0.9930 0.9994 0.9252 0.0000 0.0004 0.0001 0.0101
8 0.9839 0.9775 0.9779 0.8937 0.0011 0.0012 0.0052 0.0151
9 0.9072 0.9265 0.8429 0.7197 0.0076 0.0159 0.0518 0.0559
10 1.0000 0.9923 0.9993 1.0000 0.0000 0.0004 0.0000 0.0000

⁄ Bootstrap for 200 replications and each experiment for 20 trials.

Table 4
Run time for one trial.

Method Run time (minutes)

ECM 56
PCA-DEA 8
RB 19
BS ⁄ > 30 h

⁄ Bootstrap for 200 replications and each experiment for 20
trials.
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4.2. Impact of variation in correlation between relevant input (x2) and
random variable (x4)

Experiment 8 varies the correlation between candidate variable
x2 and random variable x4 to understand the effects of correlation
on the three methods. We find that RB and ECM perform better
than PCA-DEA (Figs. 5 and 6). The efficiency estimates deteriorate
significantly in PCA-DEA when x4 is included.

However, the effect becomes less severe when the correlation
between x2 and x4 increases, since x4 contains the same informa-
tion as x2. On the other hand, as correlation increases, both ECM
and RB tend to include x4 and hence performance deteriorates.
The percentage inclusion information for RB and ECM appears in
Fig. 7.

4.3. Impact of variation in sample size (n)

Fig. 8 shows the impact of sample size and performance for the
three methods. Note that RB is the method most affected by a small
sample size, but all three methods perform better as the sample
size increases. This provides further support that PCA-DEA works
well for small samples, but both ECM and RB outperform PCA-
DEA as the sample size increases.

Fig. 9 shows that RB fails to identify the correct set of variables
in the production process for smaller sample sizes and gives poor
estimates compared to ECM and PCA-DEA. In general, PCA-DEA
can be employed for better efficiency estimation in the case of
smaller sample sizes.

4.4. Kolmogorov–Smirnov tests for comparison of test results

The non-parametric Kolmogorov–Smirnov (KS) test is com-
monly used to compare two samples of data to test the null
hypothesis that the data are from the same distribution (see Gib-
bons (1985) for details of the KS test). We conduct a KS test on
the correlation coefficients vector and mean square deviations vec-
tor for 1000 trials performed for each of the 10 experiments. The
values in the table are the indicator variable values for the correla-
tion coefficients. When the indicator variables agree for the corre-
lation coefficients and mean square deviations, the common
indicator variable is reported. The two measures agree except for
experiment 9 (comparing ECM and RB).5 Observe that for the
majority of experiments the distributions of data significantly differ
for both correlation coefficients and mean square deviations even
though the values are similar or close in Table 3. Note that column

1 in Table 5 has several zero values for the indicator variable which
implies that the differences in the performance of ECM and RB are
statistically insignificant. The large number of ones in Table 5 indi-
cates that the four methods differ in performance behavior.

It is clear from Table 3 that the methods outperform BS and
hence it is excluded in experiments 11 to 14. These additional
experiments augment the base case by considering alternatives
such as VRS, changing dimensionality of the data set and distribu-
tion for the inefficiency distribution. The results are shown in
Table 6.

Experiment 11 shows that RB is robust to the returns to scale
effect. Comparing experiment 1 and experiment 11 which differ
only by CRS and VRS technology, we observe that PCA-DEA’s per-
formance considerably decreases. We conclude that PCA-DEA is
vulnerable to the choice of technology. Experiment 12 increases
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5 For this case, the unbracketed value is the indicator variable for the correlation
coefficient and the bracketed value is the indicator variable value for the mean square
deviation.
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the dimensionality of the production function, and again RB is ro-
bust because the variables are selected through regression,
whereas ECM heavily depends on DEA. Even though the variables
are generated independently the sample correlations are positive
and with more variables there are more pairs of inputs with posi-
tive sample correlations. Thus the principle components that are
uncorrelated less resemble the original input vectors and thus
PCA-DEA performance is diminished. Decreasing the dimension

(experiment 13) results in improved accuracy for all methods ex-
cept PCA-DEA. PCA-DEA now suffers because the information
retention level remains at 80%, but the decrease in relevant inputs
increases the relative contribution of x4 to the estimated compo-
nents. An exponential inefficiency distribution is considered in
experiment 14 and all of the methods perform similarly to exper-
iment 1; hence we conclude that the four methods are robust to
inefficiency distribution.

5. Conclusion

One objective of this paper is to provide insights into the perfor-
mance of the four methods. ECM has relatively long run times com-
pared to PCA-DEA and RB, but performs well under most scenarios,
and provided the correlation is low, identifies input variable contri-
bution to outputs. We conclude that PCA-DEA is a robust technique
in which some amount of information is retained from each of the
original variables, unlike the other three methods which select or
discard one entire variable. PCA-DEA also has the smallest run
time, works best with smaller sample sizes, and is robust to the
high correlations between inputs and irrelevant variables. Ruggi-
ero’s regression-based method is easily implemented, performs
better than the bootstrap approach, and takes less computational
time. In the case of highly correlated inputs and smaller sample
sizes, RB may not perform as well as the other three methods. RB
or ECM is preferred to PCA-DEA for large sample sizes. For larger
sample sizes with low correlations among candidate variables, RB
performs very well and accurately identifies the variables involved
in the production process. However, we find that the bootstrap re-
quires a long run time and has either similar or slightly worse per-
formance. Our conclusions are summarized below.

� PCA-DEA
�Smallest run time
�Works well with smaller sample sizes (n � 25)
�Robust to high correlations (>0.80) between relevant and
irrelevant variables
�Vulnerable to choice of technology (CRS or VRS)
�Robust to inefficiency distribution
�May not work well with higher dimension datasets
�Not clear how many PCs are needed
�Can never obtain true efficiency level

� RB
�Works well with low correlation (< 0.2) among inputs and a
large sample size (n > 100)
�Less vulnerable to the curse of dimensionality
�Robust to inefficiency distribution
�Robust to choice of technology (CRS or VRS)
�May not work well with high correlation between variables
(>0.8)
�Easy implementation

� ECM
�Performs moderately well under most scenarios
�Works well with low correlation (<0.2) among inputs and a
large sample size (n > 100)
�Performs better than RB given correlation and sample size
conditions above
�Can also identify input contribution to output
�Slightly effected by choice of technology (CRS or VRS)
�May not work well with high correlation between variables
(>0.8)
�Vulnerable to the curse of dimensionality
�Robust to inefficiency distribution

� BS
�Heavy computational burden
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Table 5
Results of Kolmogorov–Smirnov tests (1 indicates a statistically significant
difference).

Experiment ECM
vs. RB

ECM vs.
PCA-DEA

RB vs.
PCA-DEA

ECM
vs. BS ⁄

RB vs.
BS ⁄

PCA-DEA
vs. BS ⁄

1 1 1 1 1 1 1
2 1 1 1 0 0 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 0 1
6 0 1 1 0 0 1
7 0 1 1 1 1 1
8 1 1 1 1 1 1
9 1 [0] 1 1 1 1 1
10 1 1 1 0 0 1

⁄ Bootstrap for 200 replications and each test for 20 trials.

Table 6
Performance of variable selection methods (additional experiments).

Experiment Correlation coefficient Mean square deviation

ECM PCA-DEA RB ECM PCA-DEA RB

11 0.9705 0.9313 0.9918 0.0025 0.0028 0.0004
12 0.9510 0.9279 0.9831 0.0044 0.0251 0.006
13 1.0000 0.9086 0.9985 0.0000 0.0525 0.0001
14 1.0000 0.9934 0.9878 0.0000 0.0007 0.0094
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�Number of bootstrap replications needed unclear
�Poor performance

Comparing the efficiency estimates resulting from the produc-
tion models specified by the four methods did reveal significant
differences, which indicates that they will behave differently even
under similar conditions. It reinforces our conclusion that the user
must take care when selecting the best-fit method for identifying
relevant and irrelevant variables in the production process. We
suggest that highly correlated inputs could adopt PCA-DEA to over-
come the curse of dimensionality, whereas for large sample sizes
RB or ECM are best suited provided there is a low correlation
among the variables.

Suggestions for future research include evaluation of the perfor-
mance of variable selection methods under different production
functions and different distributions to generate the inputs. This
would provide further understanding of the robustness of the re-
sults presented in this paper. We also observe that techniques to
determine the values of the parameters based on the characteris-
tics of the data set for any of the methods are not currently avail-
able in the literature; this is a useful area for research.
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