
IIE Transactions (2012) 44, 88–106
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/0740817X.2011.588994

Large-scale order batching in parallel-aisle picking systems

SOONDO HONG, ANDREW L. JOHNSON∗ and BRETT A. PETERS

Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
E-mail: ajohnson@tamu.edu

Received March 2010 and accepted March 2011

This article discusses an order batching formulation and heuristic solution procedure suitable for a large-scale order picking situation
in parallel-aisle picking systems. Order batching can decrease the total travel distance of pickers not only through reducing the number
of trips but also by shortening the length of each trip. In practice, some order picking systems retrieve 500–2000 orders per hour
and include ten or more aisles. The proposed heuristic produces near-optimal solutions with run times of roughly 70 s in a ten-aisle
system. The quality of the solutions is demonstrated by comparing with a lower bound developed as a linear programming relaxation
of the batching formulation developed in this article. A simulation study indicates that the proposed heuristic outperforms existing
methods described in the literature or used in practice. In addition, the resulting order picking operations are relatively robust to
picker blocking.

Keywords: Warehouse, order batching, large-scale optimization

1. Introduction

Distribution Centers (DCs) play a critical role in achiev-
ing the mission of the supply chain by helping to absorb
market fluctuations and cost variations and by improving
customer service. To remain competitive, warehousing and
distribution entities are forced to reduce investment and
operational cost while satisfying increasing customer de-
mands for smaller and more diverse orders (Napolitano,
2008). DCs face a critical operational issue when retrieving
small-sized, broken-case orders. This order picking prob-
lem involves determining the set of orders, i.e., a batch,
that a picker will retrieve and the route through the facility
that the picker will take to pick that batch. The traditional
single-order picking mode of operation can require a sig-
nificant number of trips and result in high operational cost.
In contrast, a batch order picking strategy can group or-
ders to reduce the number of order picking trips required
and better utilize labor resources to reduce the operational
cost. Thus, an efficient order batching algorithm can have a
significant impact on operational costs in an order picking
environment that requires the retrieval of a large number
of small orders. A variety of strategies can be used to batch
orders, each leading to a different tour length through the
facility. Consequently, it is important to consider the in-
teraction between the order batching and picker routing
strategies in order to minimize the total travel distance re-
quired to collect a set of orders.

∗Corresponding author

The task of batching orders includes identifying batches
and selecting routes. The computational difficulty is
mainly due to the combinatorial number of potential
batches. The route selection problem is typically com-
putationally easy. The routing problem in rectangular
parallel-aisle systems can be optimally solved with
polynomial complexity (Ratliff and Rosenthal, 1983).
Furthermore, pickers prefer heuristic routing methods
(De Koster et al., 1999; Gademann and Van de Velde,
2005), which can be computationally simpler than the
optimal routing method. In contrast, the partitioning
decision is a primary source of complexity for the batching
problem. For example, when the number of orders is
100 and the capacity of the order picker is ten orders per
trip, the number of possible combinations for batching
the orders is 6.5 × 1085. Because of this computational
burden, only heuristic batching algorithms can solve
large-sized problems in a timely manner (De Koster et
al., 1999). In addition, the complexity of the batching
problem affects the evaluation of the solution quality.
The performance of the various proposed methods for
batching have not been demonstrated quantitatively in any
practical sized problem because lower bound estimates
were not previously available.

We are interested in picking systems that process 500–
2000 orders in a 1-h time window. This problem size (500–
2000 orders; i.e., 1000–4000 items per hour) is typical in
the literature. For example, the order picking scenarios re-
ported by Ruben and Jacobs (1999), Petersen (2000), Lieu
(2005), and Gong and De Koster (2008) can manage 20
000 to 80 000 items daily (assume an 8-h day). The target

0740-817X C© 2012 “IIE”

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 89

picking environment has one-way narrow aisles, and we
assume that pickers use traversal routes through the ware-
house. A traversal route is a path through the warehouse
used by an order picker to collect an order or a batch of or-
ders in which when the picker enters an aisle and the picker
travels the full aisle and exits through the opposite end of
the aisle from which he or she entered. This is necessary
in warehouses with one-way aisle structures and common
when 180◦ turns within an aisle are difficult or time con-
suming. Throughout most of the article we assume one-way
narrow aisles as this is a typical setting for the batch picking
problem where congestion is a concern and thus one-way
travel is enforced; however, these methods can be extended
to multi-directional travel with some increase in computa-
tional burden, as will be discussed in Section 6.3. We con-
sider both sort-while-pick and pick-then-sort strategies and
both random and class-based storage policies. This study
aims to take advantage of the traversal routing method in
developing a computationally efficient procedure to solve
large-sized problems and determine a tight lower bound to
evaluate performance.

We approach the batching problem by selecting an ap-
propriate route, not by constructing a route, and derive a
new batching procedure by first assigning orders to routes
and then constructing batches within each route set. Even
though the routing mechanism occupies a small portion of
the computational time, it influences solution approaches
for order batching algorithms. The direct assignment of
orders to routes can improve the solution quality, reduce
the computational time, and obtain a lower bound. Ac-
cordingly, we build an efficient heuristic procedure to pack
batches from orders within routes. The traditional order
batching algorithms build a route for a batch and calculate
the route length, which we term a construction-based rout-
ing method. This route construction concept then guides the
search procedure by narrowing order-to-batch assignments
to identify batches with potentially shorter routes.

This study makes three contributions. First, we demon-
strate a large-scale, near-optimal order batching procedure
for parallel-aisle picking systems. The environments cover
both narrow-aisle and wide-aisle systems and are extendible
to other layouts using traversal routing methods. Second,
we introduce a new order batching formulation and rel-
evant relaxation models utilizing a bin packing problem.
We solve the bin packing problem more efficiently for
large-sized instances compared to a batching problem, even
though a complexity analysis categorizes both problems as
difficult. Third, the proposed algorithm is compared with
available heuristic algorithms in terms of both the total
travel distance and the total travel time. A narrow-aisle en-
vironment produces picker blocking, and its impact on the
order picking throughput can be significant (Gue et al.,
2006). Thus, shortest routing distance does not guarantee
a shortest retrieval time. We conduct a simulation study to
evaluate the performance of the proposed algorithm con-
sidering picker blocking.

The remainder of the article is organized as follows. In
Section 2, we review related studies regarding order batch-
ing algorithms in parallel-aisle picking systems. Sections 3
and 4 provide details about the new formulation and the
relaxed models. Section 5 describes a heuristic batching pro-
cedure based on the relaxation model. Section 6 discusses
the computational experiments and comparison results. We
conclude with directions for future research activities.

2. Related literature

This research focuses on proximity batching algorithms
that identify orders to be picked together for the purpose
of reducing travel distances. The primary objective is to
identify orders requiring items stored in close locations
within parallel-aisle picking system. Prior work concern-
ing proximity batching algorithms for parallel-aisle pick-
ing systems can be categorized into (i) seed heuristics;
(ii) saving heuristics; (iii) metaheuristics; and (iv) optimal
approaches.

De Koster et al. (1999) conducted a comparison study
of seed and saving algorithms and concluded that the best
seed algorithms combine three control factors: (i) select the
seed order as the order that must visit the largest num-
ber of aisles; (ii) choose the next order to minimize the
number of additional aisles; and (iii) cumulatively update
the seed information based on orders in the seed. Alter-
natively, the same paper developed the saving algorithm,
which is a modified Clarke–Wright method (Clarke and
Wright, 1964; De Koster et al., 1999), in which a saving list
is updated until there is no remaining saving pair. De Koster
et al. (1999) found the saving algorithm to be preferable to
the seed algorithm. Our independent analysis confirms that
seed and saving algorithms can analyze large-sized prob-
lems. However, the solution quality of these methods is
uncertain in medium to large-sized problems, because a
provable optimal solution cannot be identified and good
lower bound estimates have not previously been reported
in the literature.

Hsu et al. (2005) proposed a metaheuristic approach us-
ing a genetic algorithm to batch orders to minimize the total
travel distance. The problem complexity of the genetic al-
gorithm strongly depended on the number of batches, the
number of orders, and the number of aisles. They conducted
tests on ∼300 orders to generate ∼40 batches in a five-aisle
warehouse, and the obtained computational performance
was that their algorithm required ∼2500 s on such prob-
lems. It is not clear whether the proposed genetic algorithm
can solve large-scale problems, because the algorithm ap-
pears to be inefficient even for medium-sized problems with
low routing complexity.

An optimal approach solves the batching and rout-
ing problem exactly through a mixed-integer program-
ming model (Gademann et al., 2001; Gademann and
Van de Velde, 2005). Gademann et al. (2001) presented a

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

90 Hong et al.

branch-and-bound solution for a wave picking environ-
ment, where a large number of orders were partitioned into
multiple batches to minimize the maximum route length.
Gademann and Van de Velde (2005) developed a branch-
and-price formulation for the sort-while-pick order picking
strategy. The authors presented two important findings: (i)
the number of aisles and the number of batches signifi-
cantly impacted the computational time; and (ii) the av-
erage time to identify an optimal solution was very short
compared to the time necessary to verify its optimality.
An epsilon-optimal approach may seem appropriate; how-
ever, prior to the work presented in this article, good lower
bounds were not available in large-scale problems. Despite
enhanced branch-and-price methods, Gademann and Van
de Velde (2005) were only able to solve problem sizes of
∼30 orders and ∼ 8 batches. We infer and confirm with our
own experiments that exact methods based on a branch-
and-bound approach face a limitation in scalability of the
number of orders and batches.

Reviewing the available methods, we identified two crit-
ical issues. First, all approaches are implemented to obtain
a solution with a partitioning first, routing second method.
The route construction procedure is necessary and follows
after a partitioning decision because the route length
varies according to pick locations in a batch. However, the
complex partitioning problem requires the construction
of a large number of combinations of order-to-batch
assignments. Second, there is no research on lower bound
algorithms for a large-scale problem within the batching
literature. Heuristic algorithms only demonstrate their
improvement relative to random batching strategy or prior
batching algorithms. Without a lower bound, we cannot
quantify the performance of the heuristics in absolute
terms.

3. Route selecting order batching model

3.1. Problem definition

We consider an order picking environment similar to those
described in Petersen (2000) and Gong and De Koster
(2008). The order profile assumes an average order size is
two lines per order and 1080 orders arrive per hour. Figure 1
shows a ten-aisle bin-shelving order picking system with
a narrow parallel-aisle configuration and two cross-aisles
located in the front and back of the layout connecting
the parallel aisles. A Loading/Unloading (L/U) station is
located in front of the left-most aisle. There are 40 storage
locations per aisle in which order pickers retrieve items.
The height of the shelves does not impact the travel length,
and we assume that it does not impact the pick time.
To collect a batch, a picker starts from the L/U station,
traverses all necessary aisles taking a one-way traversal
route without making U-turns within an aisle, and returns
to the L/U station. In other words, pickers pass through
an aisle if they enter an aisle. However, they need not

Pick loca�ons
Route

L/U sta�on

1 2 3 4 5 6 7 8 9 10

Direc�on

Fig. 1. A ten-aisle order picking system. (Color figure available
online.)

traverse every aisle. Furthermore, each aisle should be
passed in a fixed direction to prevent pickers from being
blocked in an aisle by pickers approaching from the
opposite direction; i.e., one-way traversal routing (Gue
et al., 2006). We discuss a more common routing method,
two-way traversal routing, in Section 6.3. An order picker
can carry ten bins to pick ten different orders and has
a distance-dependent travel time but a constant walking
speed and pick time per item. In determining batches,
we ignore blocking delays and minimize total retrieval
distance. For more detail on blocking, see the Conclusions
and the Appendix.

3.2. Formulation

We formulate a new order batching model that takes advan-
tage of the traversal routing method. Traversal routing is a
popular heuristic routing method in industry and the aca-
demic literature (De Koster et al., 1999; Petersen, 2000; Gue
et al., 2006; Gong and De Koster, 2008) and in warehouses
with narrow-aisle and/or one-way aisle restrictions. Using
traversal routing methods means that all possible routes
can be constructed from the warehouse layout. Thus, given
a batch, we can select a best-fit route as a matching problem
which we term the Route Selecting order Batching (RSB)
model.

The formulation is flexible enough to handle both sort-
while-pick and pick-then-sort operational strategies. CAPA
represents the capacity of the cart. Qo denotes the capacity
of the cart that order o consumes. In the case of sort-while-
pick order picking strategy, CAPA is measured in units
of orders; thus, Qo has a value of one. For the case of
the pick-then-sort picking strategy, CAPA is measured in
units of items; thus, Qo becomes the number of items in
order o. OAoa is the set of aisles that must be visited to
gather the items in order o. Route information and length
are initially constructed for all routes r in the route set
R. Route information is expressed with the aisle incidence

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 91

(RAra) and the route length is LTr . Given one-way traversal
routing of pickers, for pick areas of size |A| = 2, 4, 6, 8, 10,
and 12, where A is the set of aisles, the size of route set, |R |,
is 1, 4, 12, 33, 88, and 232, respectively. Though the size of
the route set increases exponentially, for reasonable sized
problems, e.g., ten aisles, there are only 88 potential routes.
We define a set of batches, B, initially |B | = |O | allowing
the possibility for each single order to be a separate batch.
In a solution, if batch b in B is set to include an order,
batch b is active. We formulate the RSB model to determine
whether batch b is active, indicated by BVb, if order o is
assigned to batch b indicated by Xob, and to find the route
of batch b, indicated by Ybr .

Indices and parameters

B, b = the set for batches and its index b ∈ B.

O, o = the set of orders and its index o ∈ O.

A, a = the set of aisles and its index a ∈ A = {1, . . . , |A|}.
R, r = the set of routes and its index r ∈ R.

Qo = the number of line items in order o.

OAoa =
⎧⎨
⎩

1 if order o passes through aisle a (= order
o has at least one pick in aisle a),

0 otherwise.
LTr = the length of route r.

RAra =
{

1 if route r passes through aisle a,

0 otherwise.
CAPA = the capacity of a cart.

Decision variables

Xob =
{

1 if order o is assigned to batch b,

0 otherwise.

Ybr =
{

1 if batch b takes route r,
0 otherwise.

BVb =
{

1 if batch b is active,
0 otherwise.

Formulation

(RSB) min
∑
b∈B

∑
r∈R

LTr Ybr , (1)

Subject to
∑
b∈B

Xob = 1, ∀o ∈ O, (2)

∑
o∈O

Qo × Xob ≤ CAPA, ∀b ∈ B, (3)

Xob ≤ BVb, ∀o ∈ O, ∀b ∈ B, (4)∑
r∈R

Ybr ≤ BVb, ∀b ∈ B, (5)

Xob × OAoa ≤ ∑
r∈R

RAraYbr , ∀a ∈ A, ∀o ∈ O,

∀b ∈ B,
(6)

Xob = {0, 1} ∀o ∈ O, ∀b ∈ B,

Ybr = {0, 1} ∀b ∈ B, ∀r ∈ R,

We want to minimize the total travel distance (1). The
basic function of the given formulation is to partition orders
into batches. An order cannot be separated into multiple
batches and all orders should be assigned to batches (2) and
a batch should not exceed the capacity constraint of the cart
(3). Constraints (4) and (5) are not necessary but are used
to calculate the number of batches required. The maximum
number of batches is limited to be the number of orders.
BVb is active if at least one order is assigned to batch b (4).
A batch must have exactly one route if BVb is active (5). The
aisle incidence vector of route r to which batch b is assigned
should contain the aisle incidence vector of orders in batch
b (6). Below, we introduce a route-bin packing formulation
by focusing on first identifying the routes.

4. Route-bin packing reformulation

This section develops two relaxation models for RSB
model, both of which can serve as lower bounds for the
model as shown in Fig. 2. The RSB model simplifies the
batching problem; however, it still contains partitioning
Constraints (2), which have been proven to make the tra-
ditional problem NP-complete (Ruben and Jacobs, 1999;
Gademann et al., 2001). However, we can postpone the par-
titioning stage and develop a Route-bin Packing Problem
(RPP) to assign orders directly to routes. This reformula-
tion allows us to construct a lower bound, but we will still
need additional relaxations to solve large-sized problems.

4.1. The RPP

In this section, we simplify RSB by removing the batch-
ing variables to develop a new partitioning problem. By
skipping the partitioning stage, we relax the batching prob-
lem to obtain an assignment of orders to routes and the
number of routes required to retrieve orders. Then within
route types, we can identify batches similar to a generic bin-
packing problem. We term this the RPP. Here, we reuse two
decision variables, Xob and Ybr , introduced in Section 3.2.
Using the following two equations, xor = ∑

b∈B Xob × Ybr
and yr = ∑

b∈B Ybr , we define xor , indicating that order o
is assigned to route r and yr is the count of batches taking
route r . Note that we can derive these variables from the
RSB formulation, and they are also the decision variables
in the RPP formulation.

Decision variables

xor =
{

1 if order o is assigned to route r,
0 otherwise.

yr = the number of batches assigned to route r .

(Basic RPP) min
∑
r∈R

LTr × yr , (7)

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

92 Hong et al.

Sec�on 5

Route selec�ng batching
model (RSB)

Reformula�on and
relaxa�on of RSB: Route-

bin packing problem (RPP)

Linear programming
relaxa�on of RPP (RPP-LP)

Lower bound
An easily restorable

relaxed-solu�on

Sec�on 4

Sec�on 3

Sec�on 4 A �me-truncated branch-
and-bound solu�on

Fig. 2. Relationship among models.

Subject to∑
r∈R

xor = 1, ∀o ∈ O, (8)

∑
o∈O

Qoxor ≤ CAPA × yr , ∀r ∈ R, (9)

xor × OAoa ≤ RAra yr , ∀o ∈ O, ∀a ∈ A, ∀r ∈ R,

(10)

xor = {0, 1} ∀r ∈ R, ∀o ∈ O,

yr = {0, 1, 2, . . . , } ∀r ∈ R.

The objective is to minimize the sum of the length of
assigned routes (7). We assign all orders to exactly one
route (8). The capacity of the assigned routes r should be
greater than or equal to the total quantity of items to be
picked (9). The aisle incidence vector of route r should
contain the aisle incidence vector of each order o that has
been assigned to route r (10).

Based on these two new variables (xor and yr), we derive
three constraints (8), (9), and (10), using Gaussian elim-
ination processes and Lagrangian relaxations from RSB
(shown in more detail in Appendix A). We match a con-
straint specified by order o in Equation (2) to a constraint
having the same order o in Equation (8). The Inequalities (9)
and (10) also are valid after aggregating the constraints re-
lated to route r . Fundamentally, we aggregate Constraints
(3) for batches using route r . We can replace batching index
b with route index r by aggregating the constraints having
the same route r ; thus, constraints set (9) has no batch in-
dex. Given route r , Constraints (9) determine the number
of required routes. We repeat the same process for Con-
straints (6) to obtain Constraints (10). Constraint set (10)

ensures that route r can retrieve order o by comparing the
aisle inclusion (indicator) parameters of route r and order
o. Finally, we relax Constraints (4) and (5) and the result
is RPP without batching variables (see Appendix A for the
proof).

The number of constraints in the basic RPP formulation
for constraint set (10) is |O ||A||R |. We simplify it in a
pre-processing step as follows:

Step 1. For each r in R, we evaluate whether order o is
covered by route r and, if so, include order o in set
Or .

Step 2. Then for o in O\Or , xor is set to zero because route
r does not cover order o.

Thus, constraint set (11) is constructed, which has no more
than |O ||R | constraints. Relaxing Constraint (10) to con-
stant (11) reduces the complexity of the formulation with
only a minimal expansion of the solution space. When solv-
ing RPP we use the formulation:

(RPP) min
∑
r∈R

LTr × yr ,

Subject to Equations (8) and (9),

xor = 0, ∀o ∈ O\Or , ∀r ∈ R, (11)

4.2. Linear programming relaxation of RPP

We derive a lower bound algorithm by relaxing the in-
teger restrictions within RPP. This Linear Programming
(LP) relaxation of RPP provides a weak lower bound. To
strengthen the lower bound, we add valid inequalities based
on the original set of Constraints (10) and implement it by

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 93

enforcing yr to be equal to maximal xor for route ras shown
in Equation (12).

(RPP-LP) min
∑
r∈R

LTr × yr ,

Subject to Equations (8), (9), and (11),

xor ≤ yr , ∀o ∈ Or , ∀r ∈ R,

0 ≤ xor ≤ 1 ∀r ∈ R, ∀o ∈ O,

0 ≤ yr ∀r ∈ R, (12)

Constraints (12) ensure that if any order o is assigned to
route r then there is at least one batch within route r .

4.3. Relationship and optimality

We can also construct a simple lower bound by assuming
that each order uses an optimal route (LTo) and that each
cart is fully loaded during each trip. We define the travel
distance under this construction to be the Ideal Batching
(IB) bound represented by Obj(IB):

Obj(IB) =
∑
o∈O

1/CAPA × LTo =
∑
o∈O

LTo/CAPA.

where Obj(IB) is equal to or less than Obj(RPP-LP)
because RPP-LP without Constraints (11) and (12) is
the formulation to find the travel distance under ideal
batching.

For Obj(RPP-LP), Obj(RPP), and Obj(RSB), the fol-
lowing inequalities hold as a definition of relaxation:

Obj(IB) = Obj(RPP-LP) = Obj(RPP) = Obj(RSB).

The solution to RPP is optimal if Obj(RPP) = Obj (re-
stored batches from RPP solution) because the upper bound
is the same as the lower bound. The solution by RPP-LP
is also optimal if the solution by RPP-LP is integral and
Obj(RPP-LP) is equal to Obj (restored batches from RPP-
LP solution).

5. A heuristic for route-packing based order batching
procedure

This section describes a heuristic solution procedure to
solve the batching problem based on the RPP formula-
tion (called the RBP). We prefer the RPP model because
batches can easily be constructed from the solution to RPP.
However, since RPP is still computationally difficult, we
consider two further computational improvements: (i) a
partial route set and (ii) a truncated branch-and-bound ap-
proach. The proposed heuristic procedure is composed of
three steps as described in Fig. 3. Step 1 identifies potential
route sets. Step 2 solves the RPP model. Step 3 restores a

Construct a route set

Assign orders to routes
using RPP

Build batches from orders
within routes (BPr)

Heuris�c solu�on, upper
bound

Fig. 3. A flowchart of route packing based order batching proce-
dure.

feasible solution from the infeasible solution generated by
the relaxed model. We discuss each step below.

Step 1. Construct a route set.

Before solving RPP, we must construct a set of candidate
routes. Section 3.2 shows that |R | increases exponentially
as |A| increases. Consequently, variables and constraints
in the RPP formulation, including the route index, increase
exponentially. We construct the set of routes in two steps.
First, we select an elementary route set (Re) to guarantee
that each order can be picked using one of the routes in the
route set. For order o, we check whether Re has any route
feasible for o; if not, we generate a shortest route for o and
update Re∪ r . The elementary route set is only part of the
reduced route set (Rr) used in RPP.

Second, we will also consider combined route set (Rc) be-
cause these routes will be useful when the number of orders
assigned to a route do not divide evenly into the batch size.
To generate the combined route set, we employ the Clark
and Wright II algorithm (CW II; Clarke and Wright, 1964;
De Koster et al., 1999). The modified CW II algorithm
constructs routes with relatively short travel distances. As
part of the CW II algorithm, we specify a composite level,
indicating the maximum number of routes covered by a
combined route. The composite level is a trade-off; a lower
level reduces the number of composite routes, but may de-
teriorate solution quality. A higher level is necessary when
the number of aisles is large or the ratio of the number
of elementary routes to the number of orders is large. Our
experiments indicate stable performance in terms of both
computational time and solution quality when the value is
between three and five. The details of the route-set selection
procedure follow. Note this procedure significantly reduces
the number of routes generated and makes the RPP method
useful for larger problem sizes.

Figure 4 illustrates the route construction step. Assume
that the number of aisles is six and six orders are given.
In this aisle configuration, there are 12 different routes

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

94 Hong et al.

Incidence vectors of
orders

Incidence vectors of
Elementary route set

Incidence vectors of
Combined route set

e1: {1,1,0,0,0,0}
e2: {0,0,1,1,0,0}
e3: {1,0,0,1,0,0}
e4: {1,1,1,1,0,0}

c1: {1,1,1,1,0,0}o1: {1,0,0,0,0,0}
o2: {1,1,0,0,0,0}
o3: {0,0,1,1,0,0}
o4: {1,0,0,1,0,0}
o5: {1,1,0,0,0,0}
o6: {1,0,1,1,0,0}

Fig. 4. An example of elementary route set and combined route set.

Route-set selection procedure
1. Initialize O = all orders, Re ={}, Rc ={}
2. Construct Re

For o = 1 to |O |
If Re does not include an optimal route for order o

Generate route r of o
Re = Re∪ {r}

End if
End for

3. Construct Rc from Re using a route composition algorithm
Set the composite level C
Do
Calculate the saving si j for all possible route pairs
i, j in Re ∪ Rc

Sort the saving in decreasing order.
Do

Select the pair with the non-selected highest
saving; in the case of a tie, select a random pair
If the pair does not violate composite level C Com
bine both ‘routes’ to form a new element r in Rc

While (remaining pair in the saving or any composite
candidate)

While (all r ’s in Re have not been included in Rc)
4. Rr = Re ∪ Rc

available. From the orders to be picked, we construct the
elementary route set as {e1, e2, e3, e4}. For four elementary
routes, CW II creates c1 when the composite level is four. Rr
becomes {e1, e2, e3, e4} because c1 is already a route in Re.

Step 2. Assign orders to routes using RPP.

This step solves RPP using an Inter Programming (IP)
solver with a time-truncated branch-and-bound method.
Gademann and Van de Velde (2005) indicated that the
branch-and-bound approach to solving the batching for-
mulation converges to a near-optimal solution quickly and
that most of the computational time is spent validating
the optimality of the solution. Because RPP considers a
simpler set of potential routes the computational time will
be faster, but we still need to truncate the search with a
time-limitation.

Step 3. Build batches from orders within routes.

In this step, BPr constructs batches with routes using the
order-to-route assignment information. After the batches

are constructed, we must merge the residual orders into
additional batches. The BPr sub-procedure is solved differ-
ently depending on the sortation strategy.

Decision variable

zb = the number of batches generated from route r.

(BPr) min
∑
b∈Br

zb, (13)

subject to∑
b∈Br

xob = 1, ∀o ∈ O, (14)

∑
o∈O

Qoxob ≤ CAPA × zb, ∀b ∈ Br , (15)

xob = {0, 1} ∀b ∈ Br , ∀o ∈ O,

zb = {0, 1.} ∀b ∈ Br .

1. Sort-while-pick strategy.

In this case, since the size of a batch is based on the
number of orders, not items, we can solve BPr using a greedy
algorithm. In other words, Qo is one and CAPA equals the
capacity of the cart in terms of number of orders. We assign
orders to batches on a first-come, first-serve basis. When a
batch is full, we start a new batch. This greedy procedure
obtains an optimal solution to BPr in the sense that it finds
a solution with the minimum number of batches. Figure 5
illustrates a procedure to cluster ten orders into two five-
order batches where yr = 2. Then the orders are grouped
into batches b1 and b2.

Orders (Or) in r o1 o2 o5 o6 o8 o10 o12 o13 o16 o17

Batches (Br) in r

yr

o1 o2 o5 o6 o8 o10 o12 o13 o16 o17

b1 b2

Fig. 5. Batches b1 and b2 are constructed by grouping yr orders
assigned to route r . (Color figure available online.)

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 95

Note that we can use the routes from the combined route
set to handle residual orders from the elementary route
sets. Thus, the remaining residual analysis is typically trivial
under a sort-while-pick strategy.

2. Pick-then-sort order picking strategy.

In the pick-then-sort, strategy, we define the capacity of
the cart in terms of items. Furthermore, orders can have
multiple items. Thus, assigning orders to batches using a
greedy algorithm produces a poor solution. Instead, we
solve IP formulation BRr shown above, which is small and
relatively easy to solve, using an IP solver to allocate orders
to batches more efficiently while maintaining an item limit
on the cart, CAPA. We merge any orders remaining into
new batches. When there are residual batches of size less
than half of CAPA, we apply the CW II algorithm to merge
these remaining batches.

6. Experimental results

This section reports the computational results and discusses
insights from the computational studies. We first test the
performance of the proposed heuristic on different problem
sizes and number of aisles under the assumption of using
one-way traversal routing. We then extend the experiments
to the two-way traversal routing method.

6.1. Experiment design

In addition to evaluating the performance of the presented
algorithm (i.e., RBP: the heuristic route selection–based
batching algorithm) by comparing it with a lower bound
algorithm, we also compare it with the following batching
algorithms.

FCFS: partition orders into batches based on a first-come,
first-serve policy.

Seed: the seed algorithm in De Koster et al. (1999): (i)
update the seed as an order is added to the seed; (ii) select
a seed having the largest number of aisles; (iii) choose the
order minimizing the number of additional aisles.

CW II: the Clarke and Wright algorithm (II) in De Koster
et al. (1999). See Appendix B for more detail.

We consider both sort-while-pick and pick-then-sort
strategies with CAPA of 10 orders and 30 items, respec-
tively. We determine the item locations by the within-aisle
class-based storage policy where A:B:C ratio is 0.7:0.2:0.1.
Furthermore, class A, B, and C items are stored in aisles 1
to 2, 3 to 4, and 5 to 10, respectively. Next, we compare the
random policy and a variant class-based storage policy. The
number of orders in an instance is fixed and ranges from
a medium scale (360 orders) to a large scale (2180 orders),
which we modify from the literature (Ruben and Jacobs,
1999; Petersen, 2000; Gong and De Koster, 2008), and an
industrial case study (Lieu, 2005). We consider a ten-aisle

Table 1. Experiment profiles and parameters

Profiles Parameters

Algorithms FCFS, Seed, CW II, RBP
Sorting strategy Sort-while-pick, pick-then-sort
Storage policy Class 1, Class 2, Random
The number of orders 360, 720, 1080, 1440, 1800, 2160
The number of aisles 10, 20, 30, 40
Order size Default, Uniform (3, 9)

picking system (see Appendix C for further extensions).
The number of items in an order is also determined by a
simple density function where p(1) = 0.5/0.95, p(n) = (1/2

(n − 1) − 1/2n)/(0.95) when n = 2, . . . , 10, and p(n) = 0
otherwise. This order size distribution generates a result
similar to the small picking example presented in Frazelle
(2002). The average order size is 2.02 items. In addition, we
test a variation of the order size = 6. The time to travel the
length of one pick-face is one time unit. The time to travel
the length and the width of the aisle is 21 and two time
units, respectively. The L/U station is located in front of the
left-most aisle. To combine routes in the route set selection
stage, we set the composite level to three routes. In sum,
the experiments consider the following profiles (Table 1).
Each experiment repeats for 20 random instances.

In discussing the performance of the algorithms, we use
the following notations throughout this section:

LB: linear relaxation of RPP (RPP-LP).
IB: ideal batching model.
Obj: objective value of an algorithm.
ObjL: objective value of RPP; L stands for a lower bound.
ObjU: objective value of restored solution of RPP; U

stands for an upper bound.
CPU: computational time in seconds.
LU gap: gap between an objective function value and the

RPP-LP objective function value expressed as a per-
centage (= (an objective function value − LB)/(LB)
× 100%).

We implement the analysis with the mixed-integer pro-
gramming formulations developed above using the ILOG
CPLEX Callable Library C API 11.0.4. The data set gen-
erator and comparison algorithms are developed using the
C language. To test the computational performance, we
ran executable files on a Windows NT-based server sys-
tem with Windows Vista (Xeon 2.66 Ghz CPU, 12 GB
memory). While compiling the CPLEX source, we used the
stand-alone dynamic-linked library. We disabled both the
branch-and-cut option and the heuristic search option to
evaluate the exact computational time. While solving RPP
and BPr , we set the time limit to 60 s (i.e., the truncated
branch-and-bound method). Instead of the optimal solu-
tions, we evaluated solutions of the RBP by comparing with

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

96 Hong et al.

(a) (b)

5

6

7

8

9

10

11

360 720 1080 1440 1800 2160

Th
e

tr
av

el
 le

ng
th

 p
er

 o
rd

er

The number of orders

Seed

CW II

RBP

LB

IB
5

6

7

8

9

10

11

360 720 1080 1440 1800 2160

Th
e

tr
av

el
 le

ng
th

 p
er

 o
rd

er

The number of orders

Seed

CW II

RBP

LB

IB

Fig. 6. The average travel length per order with the one-way traversal routing method: (a) sort-while-pick strategy and (b) pick-then-sort
strategy.

their LP lower bound generated with a full route set. Note
that RPP-LP does not require the time limit and that BPr
is only applicable for the pick-then-sort strategy.

6.2. Experimental results

6.2.1. Computational time and the total travel distance
The performance of the proposed RBP method is compared
to FCFS, seed, CWII, and the LB to understand the relative
performance. Because these problems are computationally
difficult, we calculated the total travel distance, the run
time, and the percentage deviation from the lower bound
as shown in Table 2. The RBP produces near-optimal solu-
tions within about 2 min and outperforms the Seed and CW
II algorithms. Moreover, the RBP improvement over alter-
native methods is larger for scenarios in which the number
of orders is smaller.

Specifically, in the sort-while-pick strategy, the Seed al-
gorithm requires a run time of 0.2 s. However, the Seed
algorithm’s LU gap is between 15.50 and 29.87%. CW II
has a shorter total travel distance but requires a longer
computational time, which is also noted by De Koster et
al. (1999). As the problem size increases, its computational
time increases exponentially. When the number of orders
is 2160, it takes on average 137.30 s. RBP demonstrates a
considerable improvement in travel distance. The LU gap
ranges from 1.07 to 2.26% when the computational time
is limited to 60 s, whereas the best approach identified in
De Koster et al. (1999), CW II, showed a gap ranging from
8.96 to 14.14%.

The computational results for the pick-then-sort strategy
show similar results. The LU gap of RBP in a pick-then-
sort strategy is larger than the sort-while-pick strategy. The
increase in the gap stems partly from the LB estimation
and is not only the result of RBP’s performance. Inevitably,
RBP produces some batches that are not filled to capacity
because of irregular order sizes. Thus, the solution quality
by RBP deteriorates.

While the computational time of RBP and CW II is al-
most equal under the sort-while-pick strategy, the run time
of RBP increases under the pick-then-sort strategy because
the batch packing stage is computationally intensive using
the IP bin-packing algorithm. However, the run times are
still shorter than 150 s for all cases. Note that for both RPP
and BPr the time limit for the branch-and-bound procedure
is 60 s and there are multiple iterations of BPr .

The Seed and CWII algorithms depend on having a large
number of orders to improve performance. When the num-
ber of orders is relatively small (360 or 720), the Seed and
CW II algorithms experience a large LU gap. Thus, the ben-
efits of RBP are significant for large-sized problems but are
even more prominent when the number of orders is small.

6.2.2. The average travel length per order
The average travel length per order is another metric we
can use to evaluate the performance of various batching
methods, assuming that all orders construct similar num-
bers of batches. With this objective, a large-sized batching
problem is preferred since larger problems can produce
more efficient batches and thus reduce trip distance. The
previous methods developed for batching demonstrate a
significant improvement in average travel length per order
as shown in Fig. 6. The improvement declines as the number
of orders increases. When the number of orders increases
from 1800 to 2160, there are minimal gains in throughput
of the order picking system. In all cases, RBP dominates
the other heuristics in solution quality with very small gaps
compared to both LB and IB.

Appendix C summarizes the other experimental results.
RBP demonstrates consistent performance over order pick-
ing profiles, varying number of aisles and alternative storage
policies.

6.2.3. Overall results
We analyzed the experimental results using Analysis of
Variance (ANOVA) to detect the significance of the order

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

T
ab

le
2.

C
om

pu
ta

ti
on

al
re

su
lt

s
ov

er
di

ff
er

en
t

al
go

ri
th

m
s

F
C

F
S

S
ee

d
C

W
II

R
B

P
L

B
S

or
t

N
um

be
r

of
IB

st
ra

te
gy

or
de

rs
O

bj
L

U
ga

p
(%

)
O

bj
C

P
U

L
U

ga
p

(%
)

O
bj

C
P

U
L

U
ga

p
(%

)
O

bj
L

O
bj

U
C

P
U

L
U

ga
p

(%
)

O
bj

C
P

U
O

bj

So
rt

-
36

0
59

23
58

.0
35

49
0.

0
29

.9
28

99
0.

4
14

.1
25

47
25

47
11

.5
2.

3
24

89
0.

8
23

06
w

hi
le

-
72

0
11

89
3

59
.8

63
32

0.
0

24
.5

55
02

5.
0

13
.1

48
45

48
45

40
.3

1.
3

47
80

1.
8

46
16

pi
ck

10
80

17
91

5
60

.5
89

70
0.

1
21

.1
80

33
16

.2
11

.9
71

77
71

77
56

.9
1.

3
70

81
2.

7
69

39
14

40
23

96
1

60
.8

11
57

3
0.

1
18

.9
10

50
5

39
.1

10
.6

95
05

95
05

60
.3

1.
2

93
88

3.
6

92
56

18
00

29
99

0
61

.0
14

12
3

0.
1

17
.1

12
94

3
75

.7
9.

5
11

84
9

11
84

9
60

.3
1.

2
11

71
0

4.
6

11
58

7
21

60
36

03
4

61
.1

16
60

6
0.

2
15

.5
15

41
2

13
7.

3
9.

0
14

18
3

14
18

3
60

.4
1.

1
14

03
2

5.
7

13
91

6
P

ic
k-

36
0

46
46

55
.7

31
47

0.
0

34
.7

24
77

0.
5

17
.0

21
29

21
29

17
.5

3.
4

20
56

4.
9

18
97

th
en

-
72

0
93

43
57

.4
55

39
0.

0
28

.1
46

59
4.

8
14

.5
41

08
41

08
67

.1
3.

0
39

83
12

.0
38

14
so

rt
10

80
14

12
7

57
.8

79
68

0.
1

25
.3

68
69

14
.7

13
.3

61
37

61
61

75
.3

3.
3

59
55

12
.9

57
83

14
40

18
83

2
58

.3
10

19
9

0.
1

23
.1

89
27

33
.7

12
.1

80
76

81
45

96
.5

3.
7

78
44

18
.1

76
90

18
00

23
52

3
58

.5
12

47
7

0.
1

21
.9

10
98

0
62

.2
11

.2
10

02
5

10
10

1
10

5.
0

3.
5

97
50

22
.8

96
15

21
60

28
25

8
58

.7
14

68
4

0.
2

20
.5

13
06

5
10

4.
1

10
.7

12
00

2
12

10
9

14
0.

5
3.

6
11

67
2

27
.7

11
55

1

97

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

98 Hong et al.

Table 3. ANOVA results

Degree of freedom Sum of squares Mean of squares F Pr(>F) Significance

Algorithms 2 999 780 000 499 890 000 53.1 0.000 0.001
Sorting strategy 2 58 200 000 000 29 100 000 000 3093.8 0.000 0.001
Storage policy 2 79 006 000 000 39 503 000 000 4199.8 0.000 0.001
Number of orders 5 72 401 000 000 14 480 000 000 1539.5 0.000 0.001
Number of aisles 3 70 209 000 000 23 403 000 000 2488.1 0.000 0.001
Order size 1 9995 900 000 9995 900 000 1062.7 0.000 0.001
Residuals 2264 21 295 000 000 9406 000

profile characteristics and the relevant parameters using
the software R version 2.11.1. In the one-way ANOVA
test, we excluded FCFS and focused on the relationship
between non-random algorithms. The results in Table 3
indicate that all six profiles have a statistical significance of
less than 0.001. For the algorithm profile, we additionally
conducted a pairwise comparison using a standard t test
statistic over the null hypotheses: (i) H0: RBP ≥ CW II
and (ii)H0: RBP ≥ Seed. The type-I error rates of multiple
testing are ≤ 0.021 and ≤ 6.4 × 10−12, respectively, using
a pooled standard deviation P-value adjustment method,
the Holm–Bonferroni method (Holm, 1979). Our results
confirm that the RBS outperforms both the CW II and
Seed algorithms but that CW II is more competitive.

6.3. Application in wide-aisle picking systems

We can extend the proposed framework in this article to
apply to operations with two-way wide-aisle pick areas. In-
dustry uses the wide-aisle picking system to reduce picker
blocking or to accommodate storage/retrieval vehicles. The
two-way traversal routing commonly appears in the liter-
ature (Ruben and Jacobs, 1999; Petersen, 2000; Gong and
De Koster, 2008).

(a) (b)

4

5

6

7

8

9

360 720 1080 1440 1800 2160

Th
e

tr
av

el
 le

ng
th

 p
er

 o
rd

er

The number of orders

Seed

CW II

RBP

LB

IB
4

5

6

7

8

9

360 720 1080 1440 1800 2160

Th
e

tr
av

el
 le

ng
th

 p
er

 o
rd

er

The number of orders

Seed

CW II

RBP

LB

IB

Fig. 7. The average travel length per order with the two-way traversal routing method: (a) sort-while-pick strategy and (b) pick-then-sort
strategy.

6.3.1. Two-way traversal routing method
For this case, pickers have greater flexibility in route
selection. Consider constructing an extended route set R
based on a two-way traversal routing method. The number
of unique routes required grows quickly in the number of
aisles. For example, for |A| = 2, 4, 6, 8, 10, 12, the corre-
sponding number of routes is 1, 7, 31, 127, 511, 2047. The
number of routes for any even value of |A| is calculated as:

L(A) = |A|C2 +|A| C4 +|A| C6 + .. +|A| C|A|, where
|A| = 2, 4, . . . , 12

6.3.2. Computational results
In Table 4, the previous four methods for batching are
used in two-way traversal routing situations. Furthermore,
Figure 7 compares the average travel length per order in
ten-aisle picking system. The impact of optimally batching
is more significant as the routing methods become more
complex. RBP benefits are even more pronounced for the
two-way traversal routing method. The RBP route set in-
cludes a smaller proportion of the total number of possible
routes to attempt to balance performance with computa-
tion time. This is the primary source of the deterioration
of the performance for both RBP and the lower bound
estimates.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

T
ab

le
4.

C
om

pu
ta

ti
on

al
re

su
lt

s
w

it
h

th
e

tw
o-

w
ay

tr
av

er
sa

lr
ou

ti
ng

m
et

ho
d

in
th

e
te

n-
ai

sl
e

pi
ck

in
g

sy
st

em

F
C

F
S

S
ee

d
C

W
II

R
B

P
L

B
S

or
t

N
um

be
r

IB
st

ra
te

gy
of

or
de

rs
O

bj
L

U
ga

p
(%

)
O

bj
C

P
U

L
U

ga
p

(%
)

O
bj

C
P

U
L

U
ga

p
(%

)
O

bj
L

O
bj

U
C

P
U

L
U

ga
p

(%
)

O
bj

C
P

U
O

bj

So
rt

-
36

0
53

85
57

.4
29

39
0.

0
22

.0
28

33
0.

4
19

.1
23

60
23

60
30

.5
2.

8
22

93
64

.8
20

63
w

hi
le

-
72

0
10

80
8

59
.4

52
87

0.
0

17
.1

52
19

4.
2

16
.0

44
77

44
77

60
.2

2.
0

43
85

12
0.

0
41

29
pi

ck
10

80
16

24
2

60
.2

75
97

0.
0

14
.8

75
98

13
.6

14
.8

66
22

66
22

60
.3

2.
3

64
70

18
5.

3
62

07
14

40
21

71
7

60
.7

98
84

0.
1

13
.6

99
23

31
.4

13
.9

87
29

87
29

60
.4

2.
1

85
44

25
8.

8
82

86
18

00
27

20
3

61
.0

12
07

7
0.

1
12

.1
12

18
7

63
.9

12
.9

10
83

4
10

83
4

60
.6

2.
0

10
61

4
42

2.
9

10
36

5
21

60
32

72
6

61
.3

14
27

4
0.

2
11

.2
14

50
6

11
1.

4
12

.6
12

92
5

12
92

5
60

.8
1.

9
12

68
0

42
9.

9
12

44
4

P
ic

k-
36

0
42

44
55

.8
25

98
0.

0
27

.8
23

86
0.

5
21

.4
19

69
19

69
50

.7
4.

7
18

76
12

67
.5

16
66

th
en

-
72

0
84

89
57

.6
46

22
0.

0
22

.1
44

08
4.

9
18

.3
38

03
38

03
60

.8
5.

4
35

99
68

33
.2

33
43

so
rt

10
80

12
83

7
58

.4
66

82
0.

1
20

.0
64

46
17

.5
17

.1
56

54
56

54
64

.6
5.

5
53

42
13

54
6.

4
50

70
14

40
17

13
2

59
.0

85
77

0.
1

18
.1

83
85

42
.8

16
.2

74
00

74
17

79
.9

5.
3

70
23

19
91

0.
8

67
52

18
00

21
42

6
59

.4
10

52
8

0.
1

17
.4

10
28

3
85

.3
15

.4
92

56
93

14
98

.8
6.

7
86

95
16

52
1.

8
84

36
21

60
25

74
4

59
.7

12
42

4
0.

2
16

.4
12

16
9

14
6.

7
14

.7
11

04
0

11
07

3
12

7.
1

6.
2

10
38

2
24

64
4.

2
10

13
7

99

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

100 Hong et al.

7. Conclusions

This article introduces a RSB, its bound model (RPP-LP),
and a heuristic solution procedure (RBP) to solve large-
scale order batching problems. The special structure of RSB
is exploited in developing the formulations and the solution
procedure. We found that RBP produces near-optimal so-
lutions in a narrow-aisle order picking system, where the
number of aisles is ten and the number of orders is 2180. The
computational time required was 60–80 s on average with
a maximum of 140 s. We found that the methods continue
to perform well in larger problems. The solution quality
was demonstrated by comparing with a tight lower bound
developed from the proposed model.

Determining the number of orders in a batching cycle is
important, because a larger number of orders may lead to a
shorter travel distance. However, a large number of orders
will not always be beneficial since the order picking opera-
tion becomes less responsive. The time saved in picking is
less than that spent waiting to gather orders to form bet-
ter batches; thus, the lead time to the customer increases.
Regardless of the method of creating batches, the perfor-
mance of the LB describes the minimal travel distance per
order. When the number of orders is 2160, the gap between
LB and IB is less than 1% for one-way traversal routing and
2.5% for two-way traversal routes as shown in Fig. 6, Table
2, Fig. 7, and Table 4, showing that IB becomes tighter as
the number of orders increases. Furthermore, the IB per
order does not reduce when the number of orders is greater
than 1440. This observation indicates that a near-optimal
batching solution to the 50 000-order batching problem
might produce minimal gains compared to the 2160-order
batching problem with respect to the average travel length
per order. Some order picking scenarios reported in the
literature (Ruben and Jacobs, 1999; Petersen, 2000; Lieu,
2005; Gong and De Koster, 2008) manage 20 000 to 80 000
items daily. Gathering orders for a day would increase the
lead time to the customer by a day, and in industries with
customer service requirements the savings in order picking
do not justify this increase in lead time.

In addition, the procedure developed in this article con-
tributes to efficient and effective DC design and operation,
where both space utilization and operational throughput
are critical. A narrow-aisle picking area in a DC is advan-
tageous in terms of space utilization, but it produces more
picker blocking (Gue et al., 2006; Napolitano and Gross
& Associates, 2003). In narrow-aisle picking systems, the
shorter travel length does not guarantee a shorter retrieval
time due to picker blocking (Gue et al., 2006). Thus, we con-
ducted a simulation study to quantify the effect on picker
blocking on the various batching algorithms reported in
Appendix D. We find that RBP is relatively robust to picker
blocking, while Seed and CW II produce very poor results
under heavy congestion. These results emphasize the need
to select a batching algorithm that reduces travel distance
and does not create excessive picker blocking. Solutions

by RBP shorten the total travel distance to near-optimal
solutions and are robust to picker blocking.

The proposed RBP batching method could easily be
added to a standard warehouse management software
package. This would be a powerful tool for the warehouse
manager to improve operational performance. However, we
note that integrating this batching approach with slotting
or warehouse design algorithms provides added benefits in
warehouse performance. Because the algorithm can handle
even very large sets of orders, the manager has the flexi-
bility to set the wave size to optimize other performance
criteria, where wave picking is a method of dividing and
staggering order releases with the purpose to minimize the
maximum lead time of any order (Gademann et al., 2001).
The analysis described in this article could be performed
once for each wave.

A variety of direct extensions of RBP are also possi-
ble. We showed that the RBP framework can be extended
to wide-aisle picking systems where pickers use two-way
traversal routes. A multiple cross-aisle system (Roodber-
gen and De Koster, 2001) and a two-block warehouse (Le-
Duc and De Koster, 2007) can also be modeled using RBP.
In these systems, it is possible to enumerate available or
preferred routes (R) and to define matching relationships
between routes and orders (Or) for general situations. In
fact, whenever a warehouse manager can construct a pre-
ferred route set (R), RBP can solve the problem for general
warehouse designs with only slight modifications.

Future research should extend this work to more routing
methods and to explicitly account for picker blocking. RBP
is a key enabler when developing an efficient batching al-
gorithm with different routing methods (Section 6.3). Our
experimental results also show that using the RBP method
for batching can significantly reduce picker blocking. How-
ever, productivity loss by picker blocking remains a con-
cern. Explicitly modeling and controlling picker blocking
when constructing batches and routing pickers offers po-
tential for important improvements by reducing total re-
trieval time in order-picking operations.

References

Clarke, G. and Wright, J.W. (1964) Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research, 12, 568–
581.

De Koster, R., Van der Poort, E.S. and Wolters, M. (1999) Efficient order-
batching methods in warehouses. International Journal of Production
Research, 37(7), 1479–1504.

Frazelle, E. (2002) World-Class Warehousing and Material Handling,
McGraw-Hill, New York, NY.

Gademann, N. and Van de Velde, S. (2005) Order batching to minimize to-
tal travel time in a parallel-aisle warehouse. IIE Transactions, 37(1),
63–75.

Gademann, N., Van den Berg, J. and Van der Hoff, H. (2001) An order
batching algorithm for wave picking in a parallel-aisle warehouse.
IIE Transactions, 33(5), 385–398.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 101

Gong, Y. and De Koster, R. (2008) A polling-based dynamic order
picking system for online retailers. IIE Transactions, 40(11), 1070–
1082.

Gue, K.R., Meller, R.D. and Skufca, J.D. (2006) The effects of pick
density on order picking areas with narrow aisles. IIE Transactions,
38(10), 859–868.

Holm, S. (1979) A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 6(2), 65–70.

Hsu, C.-M., Chen, K.-Y. and Chen, M.-C. (2005) Batching orders in
warehouses by minimizing travel distance with genetic algorithms.
Computers in Industry, 56(2), 169–178.

Le-Duc, T. and De Koster, R. (2007) Travel time estimation and order
batching in a 2-block warehouse. European Journal of Operational
Research, 176(1), 374–388.

Lieu, C.C.A. (2005) Impact of inventory storage and retrieval schemes
on productivity. M.B.A. and M.S. thesis, Massachusetts Institute of
Technology, Cambridge, MA.

Napolitano, M. (2008) Sitting tight—2008 warehouse/DC operations
survey results. Logistics Management, 47(11), 47–50.

Napolitano, M. and Gross & Associates. (2003) The Time, Space and
Cost Guide to Better Warehouse Design, The Distribution Group,
Ogden, UT.

Petersen, C.G. (2000) An evaluation of order picking policies for mail or-
der companies. Production and Operations Management, 9(4), 319–
335.

Ratliff, H.D. and Rosenthal, A.S. (1983) Order-picking in a rectangu-
lar warehouse: a solvable case of the traveling salesman problem.
Operations Research, 31(3), 507–521.

Roodbergen, K.J. and De Koster, R. (2001) Routing methods for ware-
houses with multiple cross aisles. International Journal of Production
Research, 39(9), 1865–1883.

Ruben, R.A. and Jacobs, F.R. (1999) Batch construction heuristics and
storage assignment strategies for walk/ride and pick systems. Man-
agement Science, 45(4), 575–596.

Appendix A: Formulation of basic RPP from RSB

The basic RPP can be derived from RSB. In particular, each constraint in the basic RPP is derived from a constraint of
RSB, or becomes a constraint aggregating relevant constraints in RSB.

1. Objective function.
∑
b∈B

∑
r∈R

LTr Ybr = ∑
r∈R

LTr
∑
b∈B

Ybr

By definition,
∑
b∈B

Ybr = yr .

= ∑
r∈R

LTr × yr .

2. Constraints (8).
From Equation (2):

∑
b∈B

Xob = 1, o ∈ O,

Xob1 + Xob2 + . . . + Xob|b | = 1, o ∈ O,

Since
∑
r∈R

Ybr = 1.

Xob1 × ∑
r∈R

Yb1r + Xob2 × ∑
r∈R

Yb2r + . . . + Xob|b | × ∑
r∈R

Yb|b |r = 1, o ∈ O,∑
r∈R

Xob1 × Yb1r + ∑
r∈R

Xob2 × Yb2r + . . . + ∑
r∈R

Xob|b | × Yb|b |r = 1, o ∈ O,∑
r∈R

(Xob1 × Yb1r + Xob2 × Yb2r + . . . + Xob|b | × Yb|b |r) = 1, o ∈ O,

By definition,
∑
b∈B

Xob × Ybr = xor .

∑
r∈R

∑
b∈B

(Xob × Ybr) = 1, o ∈ O,∑
r∈R

xor = 1 o ∈ O.

3. Constraints (9).
From Equation (3): Assume that all of the b have at least one order.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

102 Hong et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
o∈O

Qo × Xob ≤ CAPA,∑
o∈O

Qo × Xob ≤ CAPA,

...∑
o∈O

Qo × Xob ≤ CAPA,

b ∈ B1 = {
b |Ybr1 = 1, b ∈ B

}
,

b ∈ B2 = {
b |Ybr2 = 1, b ∈ B

}
,

b ∈ B|R | = {
b |Ybr|R | = 1, b ∈ B

}
By definition, Ybr r = 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
o∈O

Qo × Xob × Ybr1 ≤ CAPA × Ybr1,∑
o∈O

Qo × Xob × Ybr2 ≤ CAPA × Ybr2,

...∑
o∈O

Qo × Xob × Ybr|R | ≤ CAPA × Ybr|R |,

b ∈ B1,

b ∈ B2,

b ∈ B|R |

Aggregate constraints indexed by r . The new constraints become weaker; thus, the new model becomes a
relaxation of the original constraints.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
b∈B1

∑
o∈O

Qo × Xob × Ybr1 ≤ ∑
b∈B1

CAPA × Ybr1,∑
b∈B2

∑
o∈O

Qo × Xob × Ybr2 ≤ ∑
b∈B2

CAPA × Ybr2,

...∑
b∈B|R |

∑
o∈O

Qo × Xob × Ybr|R | ≤ ∑
b∈B|R |

CAPA × Ybr|R | ,

∑
o∈O

Qo × ∑
b∈Br

Xob × Ybr ≤ CAPA × ∑
b∈Br

Ybr , r ∈ R

By definition,
∑
b∈B

Xob × Ybr = xor and
∑
b∈B

Ybr = yr .

∑
o∈O

Qo × xor ≤ CAPA × yr , r ∈ R

4. Constraints (10).

From Equation (6): Assume that all b have at least one order.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xob × OAoa ≤ ∑
r∈R

RAraYbr ,

Xob × OAoa ≤ ∑
r∈R

RAraYbr ,

...

Xob × OAoa ≤ ∑
r∈R

RAraYbr ,

b ∈ B1 = {
b |Ybr1 = 1, b ∈ B

}
, a ∈ A,

b ∈ B2 = {
b |Ybr2 = 1, b ∈ B

}
, a ∈ A,

b ∈ B|R | = {
b |Ybr|R | = 1, b ∈ B

}
, a ∈ A,

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 103

By definition, Ybr r = 1.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xob × OAoa ≤ RAr1a,

Xob × OAoa ≤ RAr2a,

...

Xob × OAoa ≤ RAr|R |a,

b ∈ B1, a ∈ A,

b ∈ B2, a ∈ A,

b ∈ B|R |, a ∈ A,

Since Ybr ≥ 0, inequalities hold.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xob × OAoa × Ybr1 ≤ RAr1a × Ybr1,

Xob × OAoa × Ybr2 ≤ RAr2a × Ybr2,

...

Xob × OAoa × Ybr|R | ≤ RAr|R |a × Ybr|R |,

b ∈ B1, a ∈ A,

b ∈ B2, a ∈ A,

b ∈ B|R |, a ∈ A,

Aggregate constraints indexed by r . The new constraints become weaker; thus, the new model becomes a relaxation
of the original constraints.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
b∈B1

Xob × OAoa × Ybr1 ≤ ∑
b∈B1

RAr1a × Ybr1,∑
b∈B2

Xob × OAoa × Ybr2 ≤ ∑
b∈B2

RAr2a × Ybr2,

...∑
b∈B|R |

Xob × OAoa × Ybr|R | ≤ ∑
b∈B|R |

RAr|R |a × Ybr|R |,

a ∈ A,

a ∈ A,

a ∈ A,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

O Aoa × ∑
b∈B1

Xob × Ybr1 ≤ RAr1a × ∑
b∈B1

Ybr1,

O Aoa × ∑
b∈B2

Xob × Ybr2 ≤ RAr2a × ∑
b∈B2

Ybr2,

...

O Aoa × ∑
b∈B|R |

Xob × Ybr|R | ≤ RAr|R |a × ∑
b∈B|R |

Ybr|R |,

a ∈ A,

a ∈ A,

a ∈ A,

O Aoa × ∑
b∈Br

Xob × Ybr ≤ RAra × ∑
b∈Br

Ybr , r ∈ R, a ∈ A,

By definition,
∑
b∈B

Xob × Ybr = xor and
∑
b∈B

Ybr = yr .

O Aoa × yor ≤ RAra × yr , r ∈ R, a ∈ A.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

104 Hong et al.

Appendix B: Clarke and Wright II algorithm

Step 1. Obtain the distance saving si j for all possible order
pairs i, j when two orders are grouped, given the
capacity of the pick device.

Step 2. Sort the savings in decreasing order.
Step 3. Select the pair with the highest savings. In the case

of a tie, select a random pair.
Step 4. Combine both orders to form a new cluster, if al-

lowed by the pickers’ capacity. If not, choose the
next combination on the list and repeat Step 4.

Step 5. If not all order combinations have been include in
a route, proceed with Step 1. In the calculation, all
clusters are considered as orders. Otherwise, finish.

Appendix C: Computational performance over other
order picking profiles

1. The number of aisles.

Table A1 compares the CW II and RBP over different
numbers of aisles. The cardinality of the route set strongly
dependent on the number of aisles. RPP-LP can only solve
∼14-aisle or smaller instances. Thus, Table A1 does not in-
clude LB results and LU gaps. Instead, we use the following
comparison:

RBP/CW: the ratio of ObjU to the objective function value
of CW II. This measure is used where a lower bound is
impossible.

RBP still dominated CW II in RBP/CW, but RBP re-
quired a long computational time as the number of aisles
increased. Note that we set the composite level to five when
the number of aisles = 40.

The route reduction step is not effective in the 40-aisle
instance. As the number of routes increased, we modulated
the truncation time limit to produce good solutions; specif-
ically, 120 s, 180 s, and 240 s were allowed for 20-aisle,
30-aisle, and 40-aisle instances. However, despite this in-
crease in the truncation limit, RBP’s performance suffered
loss in the objective values. Figure A1 illustrates the varia-

Table A1. The experimental results with the variation of the number of aisles

CW II RBP

Number of orders Number of aisles Obj CPU ObjL ObjU CPU Number of routes RBP/CW

1080 10 8033.3 15.6 7175.0 7175.0 56.7 40.4 0.89
20 12 492.8 17.0 10 647.5 10 647.5 121.0 147.2 0.85
30 16 614.3 17.2 14 379.6 14 379.6 242.9 254.4 0.87
40 20 517.8 18.7 18 418.0 18 418.0 366.8 342.4 0.90

2160 10 15 412.0 141.5 14 186.6 14 186.6 60.5 47.8 0.92
20 23 365.4 129.5 20 287.7 20 287.7 123.1 214.1 0.87
30 31 102.9 147.8 26 587.4 26 587.4 253.5 393.4 0.85
40 37 971.8 142.0 33 637.3 33 637.3 394.3 552.9 0.89

tions of the average travel length over different algorithms
with respect to the number of aisles. The performance gap
between CW II and RBP has not been widened as shown
in Fig. A1 when the number of aisles is 40.

2. Storage policy.

Table A2 includes the test results with different storage
policies. Picking systems can operate under different stor-
age patterns or storage policies. As orders were scattered
more evenly, all algorithms had longer travel distances. In
particular, the computational time of RBP lengthens. The
storage policy has an impact on the route set of RBP. An
increase in the number of uniformly stored items produces
more elementary routes. Thus, the elementary route set
becomes larger, and the number of combined routes also
increases. A larger route set results in longer computational
time.

3. Order size = Uniform[3,9].

Table A3 includes the test results when the order size
is determined using a uniform distribution, Uniform [min,
max] = Uniform [3, 9]. Other profiles are the same as the
narrow-aisle sort-while pick strategy when a regular class-
based storage policy is employed. A similar result has been
observed.

Appendix D. Impacts on picker blocking in narrow-aisle
configuration

In narrow-aisle picking systems, the shorter travel length
does not guarantee a shorter retrieval time due to picker
blocking (Gue et al., 2006). Thus, we conduct a simulation
study to quantify the effect on picker blocking on the var-
ious batching algorithms. Two situations were considered:
light congestion and heavy congestion. A light congestion
environment is defined as the number of orders in a time
window = 1080 orders; four time windows; pick : walk time
ratio = 5:1; five pickers; setup time per batch = 120; and
cart capacity = ten orders or 20 items. A heavy congestion
environment was defined as above except: pick : walk time

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

Large-scale order batching in parallel-aisle picking systems 105

(a) (b)

0

5

10

15

20

25

30

10 20 30 40

Th
e

av
er

ag
e

tr
av

el
 le

ng
th

 p
er

or

de
r

The number of aisles

Seed

CW II

RBP

IB

0

5

10

15

20

25

30

10 20 30 40

Th
e

av
er

ag
e

tr
av

el
 le

ng
th

 p
er

or

de
r

The number of aisles

Seed

CW II

RBP

IB

Fig. 1. The average travel length per order over the variation of the number of aisles, (a) the number of orders = 1080: and (b) the
number of orders = 2160.

Table A2. The experimental results with the variation of storage policies

CW II RBP

Number of orders Number of aisles Obj CPU ObjL ObjU CPU Number of routes RBP/CW

ABC 10 18 000.4 140.8 16 181.4 16 181.4 60.7 63.7 0.90
=0.5:0.3:0.2 20 28 926.6 130.9 24 043.8 24 043.8 128.4 340.5 0.83
Random 10 22 125.6 121.3 19 310.4 19 310.4 60.9 83.0 0.87
storage 20 37 872.4 126.9 34 535.9 34 535.9 150.0 554.5 0.91

Table A3. Experimental results with order size = Uniform[3,9]

FCFS Seed CW II RBP LB

Number LU gap LU gap LU gap L U LU gap IB
of orders Obj (%) Obj CPU (%) Obj CPU (%) ObjL ObjU CPU (%) Obj CPU Obj

360 7999.0 49.35 5415.8 0.01 25.19 4724.0 0.43 14.24 4116.7 4116.7 25.22 1.59 4051.3 0.42 3909.3
720 15 993.4 50.33 9943.6 0.02 20.11 8934.3 5.44 11.09 8015.9 8015.9 49.02 0.90 7943.5 0.87 7812.3
1080 24 072.7 50.74 14 328.5 0.05 17.25 13 009.6 18.51 8.86 11 934.8 11 934.8 56.93 0.65 11 857.0 1.51 11 725.6
1440 32 115.6 50.83 18 602.2 0.09 15.12 17 085.4 45.33 7.58 15 870.3 15 870.3 59.94 0.50 15 790.4 2.19 15 660.1
1800 40 127.3 50.94 22 819.8 0.15 13.72 21 093.6 75.18 6.66 19 770.4 19 770.4 60.39 0.42 19 688.3 2.87 19 561.4
2160 48 193.6 50.98 27 005.7 0.21 12.51 25 141.7 127.23 6.03 23 721.8 23 721.8 60.50 0.40 23 626.8 3.85 23 491.9

(a) (b)

0

10

20

30

40

50

60

Sort-while-pick
Random storage

Sort-while-pick
Class-based

storage

Pick-then-sort
Random storage

Pick-then-sort
Class-based

storage

Th
e

to
ta

l r
et

rie
va

l �
m

e
(h

ou
r)

FCFS

Seed

CW II

RBP

0

5

10

15

20

25

30

Sort-while-pick
Random storage

Sort-while-pick
Class-based

storage

Pick-then-sort
Random storage

Pick-then-sort
Class-based

storage

To
ta

l r
et

rie
va

l �
m

e
(h

ou
r)

FCFS

Seed

CW II

RBP

Fig. 2. Total retrieval time comparison via a simulation study: (a) light congestion case and (b) heavy congestion case.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

106 Hong et al.

ratio = 10:1; 15 pickers; and cart capacity = 25 orders or
50 items.

Figure A2 depicts the comparison of the total retrieval
time. RBP is relatively robust to picker blocking situation,
whereas Seed and CW II produce poor results under heavy
congestion. This result emphasizes the importance of picker
blocking and selecting a batching algorithm that not only
reduces travel distance but does not create excessive picker
blocking.

Biographies

Soondo Hong obtained his B.S. and M.S. in Industrial Engineer-
ing from POSTECH, South Korea, and his Ph.D. from the De-
partment of Industrial and Systems Engineering at Texas A&M
University. His research interests include cross-training based opera-
tions management and robust logistics operations in manufacturing,
warehousing, software, and service industries. He is a member of the
INFORMS.

Andrew L. Johnson is an Assistant Professor in the Department of In-
dustrial and Systems Engineering at Texas A&M University. He obtained
his B.S. in Industrial and Systems Engineering from Virginia Tech and
his M.S. and Ph.D. from the H. Milton Stewart School of Industrial
and Systems Engineering at Georgia Tech. His research interests include
productivity and efficiency measurement, warehouse design and opera-
tions, material handling and mechanism design. He is a member of the
INFORMS, National Eagle Scout Association, and German Club of
Virginia Tech.

Brett A. Peters is Professor and Head of Industrial and Systems Engi-
neering at Texas A&M University. His education includes a B.S.I.E. from
the University of Arkansas and M.S. and Ph.D. in Industrial Engineer-
ing from the Georgia Institute of Technology. His primary research area
is in facility design and material handling systems. His work has been
funded by a variety of government and industry entities. He served as
President of the College-Industry Council on Material Handling Edu-
cation in 2002 and 2003. He was named a 2004 College of Engineering
Faculty Fellow at Texas A&M, received the Outstanding Young Engi-
neering Alumni Award from the University of Arkansas in 2005, and was
named a Fellow by the Institute of Industrial Engineers in 2010. He has
been Department Head at Texas A&M since 2004.

D
ow

nl
oa

de
d

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

]
at

 2
1:

03
 2

4
N

ov
em

be
r

20
14

