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The prediction and control of distributed healthcare behaviors within a population such as smoking, diet, and physical activity are
of great concern to those who pay for healthcare, including employers, insurers, and public policy makers, given the significant effect
on costs. In considering the selection of multiple health behaviors, the nature of dependence between behaviors must be considered
because simplifying assumptions such as independence are untenable. Using data from the National Heart, Lung, and Blood Institute,
we find strong evidence to reject the hypothesis of independence between the aforementioned behaviors, while finding some evidence
of conditional independence. In this article, several alternatives to the assumption of independence are presented, each of which
significantly improves the ability to predict combined behavior. We present models of dependence through marginal probabilities
and, taking inspiration from non-expected utility maximizing behavior, through attractions to behavioral alternatives. We find that
consistently healthy (or unhealthy) combinations of behaviors are more likely to occur relative to the assumption of independence.
We discuss how our results could be used in designing policies to curtail costs and improve health.
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1. Introduction

The current unsustainable trend in healthcare expenditures
has produced an explosion of research into the processes,
operations, and techniques of healthcare service providers.
However, relatively less attention has been given to the dis-
tributed decisions of healthcare consumers that have im-
plications for costs as well as quality of life. For example,
the cost of physical inactivity alone was estimated to be
$76.6 billion (USD) in the year 2000 (Pratt et al., 2000).
The prediction and control of healthcare behaviors such as
smoking, diet, and physical inactivity are of interest to those
who pay for healthcare, including employers, insurers, and
policy makers, given their large effect on costs. These three
behaviors are of particular interest given their influence in
the prevention and management of chronic diseases such
as coronary heart disease. These tasks are particularly chal-
lenging due in part to the difficulty in developing accurate
models of consumer behavior in healthcare situations. A
common normative assumption made to characterize con-
sumer behavior is expected utility maximization. However,
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the information and intelligence requirements imposed on
healthcare consumers by the assumption of expected utility
maximization make it an implausible description of behav-
ior. Identifying and forecasting health outcomes, estimat-
ing the costs of those outcomes, and weighing the impacts
of personal health decisions are highly complex problems
facing healthcare consumers.

From a single consumer’s internal perspective, health be-
havior is a decision and hence not uncertain. However, for
a policy maker or payer considering a population of con-
sumers, the health behavior of a consumer can be modeled
as a random variable. When considering multiple behaviors,
care must be taken to consider the nature of the dependence
between the behaviors. The boundaries of dependence,
total dependence, and complete independence are the most
frequently used simplifying assumptions to model these re-
lationships but are often used primarily for their analytical
or computational convenience, rather than their realism
or accuracy (Ferson et al., 2004). In many circumstances
these assumptions are doubtful, unlikely, or clearly wrong.
Health-related behaviors of healthcare consumers is one
such example where these simplifying assumptions are
untenable.
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2 Pope et al.

In this article, several alternatives to the simplifying as-
sumption of independence between behaviors are presented
to model the healthcare consumers diet, exercise, and smok-
ing behaviors. The first models presented model the depen-
dence through conditional probabilities and our empirical
finding of conditional independence between smoking and
dietary behaviors. The second approach to modeling de-
pendence is inspired by the lack of expected utility maxi-
mization on the behalf of healthcare consumers. A common
approach to modeling decision making in such scenarios is
through the use of learning rules (Fudenberg and Levine,
1998), which model attractions to the various decision al-
ternatives. When the marginal distributions over behaviors
are governed by attractions, as in the case of learned behav-
iors, dependence can be modeled through computed prob-
abilities or through the attractions themselves. To model
dependence through attractions to multiple behaviors, we
introduce the concept of a joint attraction function. To
illustrate the importance of considering dependence, and
to compare the proposed models of dependence, we use
data from the National Heart, Lung, and Blood Institute
(NHLBI). The results show that independence between be-
haviors clearly fails and that the alternatives presented sig-
nificantly improve prediction of the combined diet, exercise,
and smoking behavior.

The remainder of this article is organized as follows:
Section 2 reviews the literature on modeling probabilistic
dependence and the use of learning rules to model behav-
ior. Section 3 introduces the data and examines the assump-
tion of independence between behaviors. Section 4 presents
several alternatives for modeling dependence between be-
haviors, first by conditional probabilities and, second, by
joint attraction functions. Cross-validation of the models
shows that each significantly reduces prediction error rela-
tive to the assumption of independence. Section 5 presents
a longitudinal validation of the approaches, and Section 6
discusses our findings, their relevance for healthcare policy,
and directions for future research.

2. Literature review

Dependence between random variables is an old yet impor-
tant concept for any discipline considering multiple random
variables. See Lehmann (1966) for an early discussion of de-
pendence concepts, measures of dependence, and tests for
independence. More recently, Ferson et al. (2004) provided
an excellent review of dependence modeling, including a
detailed look at the relationship between dependence and
correlation. Application domains modeling and illustrating
dependencies include medicine (Chessa et al., 1999), relia-
bility (Vesely et al., 1981), geological exploration (Keefer,
2004; Bickel and Smith, 2006), and risk assessment (Clemen
and Reilly, 1999). Copulas (Nelsen, 2006) have been the
most popular means of specifying a dependence structure
given two or more continuous marginal distributions. How-
ever, we avoid their use here since we are interested in

discrete decisions, amenable to modeling via learning rules,
with discontinuous marginal distributions. Although the
behaviors we study could be defined and measured on con-
tinuous scales, it would be unclear which copula family to
assume. We prefer simpler descriptions of dependence that
seem more plausible given the behavioral health preferences
of consumer, which drive dependencies in health behaviors.
Decomposing a joint probability distribution using Bayes’
Rule to construct dependence trees is a well-established
approach (Chow and Liu, 1968) for approximation and es-
timation of a given data set. The value in constructing a
model of this conditional dependence is the ability to ap-
ply the model outside the derivation data set and to better
understand the underlying process of dependence. Both ob-
jectives would be desirable in the health behavior domain.

Our second approach to modeling dependence is inspired
by non-expected utility models of preferences. The depar-
ture from the normative assumption of expected utility
maximization is motivated by the arguments of bounded
rationality (Simon, 1955; Ellison, 2006), which have given
rise to various non-expected utility models of decision mak-
ing (Machina, 2004). Among these, learning rules are in-
tuitive and cognitively plausible and describe how choices
and preferences dynamically evolve in individual decision
frameworks and games (Fudenberg and Levine, 1998).
Flexible learning models such as the experience-weighted
attraction model (Camerer and Ho, 1999) generalize vari-
ous learning protocols such as choice reinforcement mod-
els (Roth and Erev, 1995) and belief-based models (e.g.,
fictitious play (Brown, 1951)). The basic setup is that fac-
ing a repeated decision from a finite set of alternatives A,
an individual chooses an alternative based on attractions
({si }i∈A = s ∈ S) to each alternative and receives a payoff
or reward x ∈ X at each decision epoch. A learning rule,
L : S × A × X → S, computes the subsequent epoch’s at-
traction given the previous attractions, alternative chosen,
and payoffs received. We note, however, that the dynamic
learning rules of the economic community have yet to be in-
corporated into the behavioral health domain. Psychology-
based models such as the Theory of Planned Behavior
(TPB); Ajzen (1991) analyze the factors that comprise be-
havioral intent and have been applied with success in the
health domain (Godin and Kok, 1996). However, TPB does
not explain how these factors evolve over time. There is a
scarcity of research regarding how multiple behaviors are
dependently chosen from the learning perspective. The ex-
isting work on multiple health behavior modification has
focused on intervention design (Glasgow et al., 2004). We
now turn to the data and what insights can be gleaned
regarding dependence between behaviors.

3. Data examination

Formally, the three behaviors considered in this article are
binary decisions about diet, exercise, and smoking. For
each behavior, the healthy choice will be denoted by a one,
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Modeling dependence in health behaviors 3

Table 1. Joint behaviors in ARIC data, (pr (E1) = 0.46, pr (D1) =
0.24, pr (S1) = 0.79)

E0 E1

S0 S1 S0 S1

D0 1054 3323 D0 641 2817
D1 264 913 D1 207 1090

whereas the unhealthy choice will be denoted by zero. These
zero/one distinctions are based on the guidelines of the
American Heart Association (AHA), to not smoke (S1;
smoking = S0), get at least 150 minutes of moderate phys-
ical activity per week (E1; < 150 = E0), and to consume a
diet with less than 10% of total calories coming from satu-
rated fat (D1; ≥10% = D0).

The data set used in this article is from the Atherosclero-
sis Risk In Communities (ARIC) Study conducted by the
NHLBI. The study followed cohorts of individuals from
four geographically diverse communities, tracking various
aspects of cardiovascular health and behavior. Although
the longitudinal aspect is not crucial for this article, the
data set does provide detailed information to measure be-
havior relative to the AHA guidelines. Using data from a
single time period (so that independence between the obser-
vations is reasonably assumed) provides behavioral obser-
vations of 10 309 individuals. Table 1 provides a summary
table of the data.

3.1. Independence

To test for independence between pairs of behaviors, χ2

tests were performed. For n × m contingency tables, the
test statistic χ2 = ∑

i, j (Oi j − Êi j )2/Êi j , where Oi j is the
observed frequency of cell i j , and Êi j is the expected fre-
quency of cell i j based on the marginal probabilities of i and
j and has the χ2 distribution with (n − 1)(m − 1) degrees of
freedom (Agresti, 2007). For each pair of behaviors, three
tests of independence were performed. The test was per-
formed within subsets of the population defined by choice
in the third behavior (0/1), and combined (C) across the
third behavior. The results displayed in Table 2 show that
the relationship between diet and smoking is the only pair
for which the null hypothesis of independence is not easily
rejected. These results from the χ2 test were compared and
found to be quite similar to other tests for independence
such as the G-test (see results in the Appendix).

To further clarify the dependence structure observed
in the data, the Cochran–Mantel–Haenszel (CMH) test
(Gastwirth, 1984) was performed to check for conditional
independence. In data where there are more than two vari-
ables, this test checks for conditional independence based
on the strength of the association measured by the odds ra-
tio. The test results are summarized in Table 3. The CMH
test fails to reject the hypothesis that conditioned on the
level of exercise, diet and smoking behavior are statistically

Table 2. Pairwise χ2 tests for independence between diet (D),
smoking (S), and exercise (E)

Test pair Third behavior level χ2 p-Value

DS 0 1.30 0.253
DS 1 4.10 0.043
DS C 7.48 0.006
ES 0 34.69 0.000
ES 1 16.34 0.000
ES C 53.32 0.000
ED 0 5.56 0.018
ED 1 43.78 0.000
ED C 51.67 0.000

independent, since the null hypothesis fails to be rejected
at the 0.05 significance level with the Bonferroni correc-
tion. The odds ratio pooled over levels of the conditioning
variable also indicates a relatively strong association be-
tween exercise and both smoking and dietary behavior. We
use these results to inform our modeling of dependence,
described in the next section.

4. Modeling the dependence

The purpose of modeling the dependence between behav-
iors is to predict the probabilities for each type of combined
behavior from marginal probabilities (equivalently separate
attractions) to each behavior. We consider two ways to in-
corporate dependence: through the probabilities using the
insights concerning conditional independence discovered
in Section 3 or through the attractions via joint attraction
functions. Figure 1 illustrates the dependence pathways.

4.1. Models of conditional independence

The first pathway we explore to model the dependence is
directly through the probabilities, labeled 1© in Fig. 1. The
χ2 tests from Section 3 showed that independence does
not hold and hence marginal probabilities cannot simply
be multiplied together to compute a joint probability for
a combined behavior. However, the CMH tests provided
evidence that conditional on exercise, diet and smoking are
independent. Using this evidence allows simplified compu-
tation of the joint probability through Bayes’ Rule:

pr (Ei Dj Sk) = pr (Ei ) × pr (Dj Sk|Ei )
= pr (Ei ) × pr (Dj |Ei ) × pr (Sk|Ei ). (1)

Table 3. Results of the CMH tests for conditional pairwise inde-
pendence between diet (D), smoking (S), and exercise (E)

Test pair CMH statistic p-Value Pooled OR

DS 5.126 0.024 1.174
ES 51.133 0.000 1.434
ED 49.417 0.000 1.395
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4 Pope et al.

Fig. 1. Dependence pathways from behaviors attractions to the
joint probability.

The question then becomes how to model pr (Dj |Ei ) �=
pr (Dj ) or pr (Sk|Ei ) �= pr (Sk). Our first approach is an ad-
ditive effects model.

4.1.1. Conditional independence–additive dependence
The intuition behind this model is that exercise decisions
would tend to support or reinforce similar diet and smok-
ing decisions by increasing the probability of those similar
decisions. Here we model this increase through additive
functional forms and parameters, α:

pr (D1|E1) = pr (D1) + αD1|E1

pr (D0|E1) = pr (D0) − αD1|E1

pr (D1|E0) = pr (D1) + αD1|E0

pr (D0|E0) = pr (D0) − αD1|E0

pr (S1|E1) = pr (S1) + αS1|E1

pr (S0|E1) = pr (S0) − αS1|E1

pr (S1|E0) = pr (S1) + αS1|E0

pr (S0|E0) = pr (S0) − αS1|E0

.

All of the α values here are easily estimated from the
data by differencing observed probabilities (e.g., α̂D1|E1 =
p̂r (D1|E1) − p̂r (D1)). Performing these computations on
the ARIC data displayed in Table 1 leads to α̂D1|E1 =
0.0328, α̂S1|E1 = 0.0318, α̂D1|E0 = −0.0281, and α̂S1|E0 =
−0.0272. Note that α̂D1|E1 ≈ α̂S1|E1 ≈ −α̂D1|E0 ≈ −α̂S1|E0 ≈
0.03. With these parameter estimates, the resulting condi-
tional probabilities will only be meaningful if the marginal
probabilities of diet or smoking fall in the range [0.03, 0.97].
Based on these α values, the Conditional Independence–
Additive Dependence (CIAD) model can be used to pre-
dict occurrences of each type of behavior. Evidence for the
goodness-of-fit of this model is presented after introducing
our second model of dependence.

4.1.2. Conditional independence–multiplicative
dependence
Another approach for modeling dependence based on the
same intuition is a multiplicative approach, pr (D|E) =
βD|E × pr (D). The β parameters represent multiplica-
tive adjustments to likelihoods based on the relationship
between diet (or smoking) and exercise behaviors. This
approach could be viewed as an analog to Keefer’s un-
derlying event model (Keefer, 2004), where exercise is the
“underlying behavior” driving the combined behavior. To
ensure meaningfulness of the probabilities, note that both

Table 4. Comparing conditional independence models for pre-
dicting joint behaviors

Behavior Data IND CIAD CIMD

000 1054 888 1055 1026
001 3323 3342 3342 3365
010 264 281 281 275
011 913 1055 888 901
100 641 757 623 618
101 2817 2847 2839 2842
110 207 239 230 229
111 1090 899 1050 1053
SSE — 100 143 4199 5798

the data and the additive approach indicate that when
i �= j , pr (Di |Ej ) < pr (Di ) and the analogous relationship
between exercise and smoking. This results in an estimated
value of β < 1 when i �= j . This insight proves useful since
a probability multiplied by a scalar less than one is still a
probability. Using this insight, we use four parameters, β,
to model decreases in conditional probabilities:

pr (D1|E1) = 1 − pr (D0|E1)
pr (D0|E1) = βD0|E1 × pr (D0)

pr (D1|E0) = βD1|E0 × pr (D1)
pr (D0|E0) = 1 − pr (D1|E0)

pr (S1|E1) = 1 − pr (S0|E1)
pr (S0|E1) = βS0|E1 × pr (S0)

pr (S1|E0) = βS1|E0 × pr (S1)
pr (S0|E0) = 1 − pr (S1|E0)

.

Estimating the β values from the ARIC data in Table 1
results in β̂D0|E1 = 0.96, β̂D1|E0 = 0.88, β̂S0|E1 = 0.85, and
β̂S1|E0 = 0.97. Our ability to identify dissimilar behaviors
ensured this Conditional Independence–Multiplicative De-
pendence (CIMD) model would produce meaningful prob-
abilities, although in general, care would need to be taken
to ensure meaningful probabilities.

Table 4 reports the sum of squared differences be-
tween observed outcomes and predicted outcomes for both
the CIAD and CIMD models. These are compared with the
alternative model of assuming independence (IND). The
left-most column indicates the combined behavior, repre-
sented by the exercise behavior in the hundreds digit, diet
behavior in the tens digit, and smoking behavior in the ones
digit. The second column from the left reports the number
of observations found in the data for each behavior, as
shown in Table 1. The overall Sum of Squared Error (SSE)
is reported in the bottom row; smaller values indicate better
predictive power.

4.1.3. Validation of conditional independence models
In order to validate the models of conditional indepen-
dence, we divide our data set into training (75%) and testing
(25%) subsamples. Table 5 reports the mean and standard
error of the SSEs in the testing data sample with parameters
estimated from the training sample over 1000 subsamples.
In order to provide a comparison with extant methods in
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Modeling dependence in health behaviors 5

Table 5. Standard errors on testing data by dependence models
and copulas

IND CIAD CIMD CF CC

SSE 6959.8 1207.6 1150.2 1721.9 1741.8
SESSE 68.1 28.8 26.1 35.9 35.4

the literature, we also model dependence through copulas.
From Nelsen (2006) we estimate the dependence by two
comprehensive, Archimedian copulas, Frank’s copula:

CF (u, v) = −1
θ

ln
(

1 + (e−θu − 1)(e−θv − 1)
(e−θ − 1)

)
,

and Clayton’s copula:

CC(u, v) = [
max{u−θ + v−θ − 1, 0}]−1/θ

.

The dependence parameter, θ , was estimated for each cop-
ula by the maximum likelihood method.

Each conditional independence model predicts joint be-
haviors significantly better than pure independence. Our
results show that both CIAD and CIMD models reduce the
SSEs by at least 80% and are statistically indistinguishable
from each other. Both copulas also significantly improve
over the independence assumption, whereas neither copula
reduces errors as much as the CIMD or CIAD models. In
terms of pros and cons that could aid in distinguishing be-
tween CIAD and CIMD, there are few. Both models func-
tion similarly based on the intuition that the likelihood of a
dependent behavior will increase (decrease) when a similar
(dissimilar) behavior is chosen. When the populations for
which the models are estimated and applied have similar
marginal probabilities (as would typically be the case), the
models will behave equivalently.

Although our models of dependence were presented
in the context of binary decisions, each could be gener-
alized to the case of three or more alternatives per decision,
albeit at the increased cost of parameters needing to be es-
timated. One approach to dealing with the increasing num-
ber of parameters in the case of greater alternatives would
be to impose additional assumptions regarding the form
of dependence. For example, consider modeling diet and
exercise behavior with N alternatives each, again ranging
from unhealthy to healthy. An additive dependence model
where diet behaviors are more likely when conditioned on
exercise behaviors of similar healthiness could make the
assumption that all other behaviors are equally less likely:

pr (Di |Ej ) =
{

pr (Di ) + α j i = j
pr (Di ) − α j/(N − 1) i �= j .

Another reasonable assumption is that increasingly differ-
ent behaviors will be increasingly less likely to be observed

jointly, which could be modeled by a multiplicative depen-
dence function,

pr (Di |Ej ) =
{

β
|i− j |
D|E pr (Di ) i �= j

1 − ∑
k�=i pr (Dk|Ej ) i = j

.

Having presented two models of dependence through path-
way 1©, next we describe modeling dependence via pathway
2© using joint attraction functions.

4.2. Joint attraction functions

We now take the approach of modeling consumer prefer-
ences through attractions, sa, to various alternatives, a ∈ A.
These attractions can be interpreted as expected utilities
in the sense that alternatives with higher attractions are
preferred. As mentioned earlier, the attractions approach
would be desirable when modeling the evolution of prefer-
ences through a learning rule. The relationship between
attractions and probabilities is computed through a
Stochastic Choice Function (SCF), f : S → �(A), which
maps behavior alternative attractions to the unit simplex on
alternatives. We limit our focus to the logit rule, where given
real-valued attractions {sa} a∈A, the probability of choosing
an alternative, a, is computed by

pr (a) = eλ·sa∑
a′∈A eλ·sa′ .

The logit rule is non-unique up to a normalization of the
attractions, which allows preferences to binary behaviors
to be represented using a single scalar value (with the other
attraction normalized to zero). We will now assume that in-
dividuals form attractions to joint behaviors by combining
attractions to separate behaviors using a joint attraction
function. This assumption is relatively benign, implying
only that a consumer’s preferences over a joint decision are
a function of the consumer’s preferences over each indi-
vidual decision. A joint attraction function takes as inputs
attractions ({si

a(i )}n
i=1) to alternatives of multiple behaviors

(i = 1, . . . , n) and computes a joint attraction to the com-
bined behavior, a = (a(1), a(2), . . . , a(n)). For example, the
joint attraction function could be simple addition, multi-
plication, or a combination. The functional form of the
joint attraction function through the stochastic choice rule
defines a relationship of dependence between behaviors.

Proposition 1. Under the logit rule, a simple additive joint
attraction function

g
(

s1
a(1), s2

a(2), . . . , sn
a(n)

)
=

n∑
i=1

si
a(i )

is equivalent to assuming independence between behavioral
probabilities.
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6 Pope et al.

Table 6. Additive and interaction joint attraction functions for predicting joint behaviors

Behavior Data

θE
θD
θS

θED
θES
θDS

=

1
1
1
0
0
0

0.97∗∗∗
1.00∗∗∗
1.00∗∗∗

0
0
0

1.47∗∗∗
1.14∗∗∗
1.00∗∗∗
5.31∗∗∗

0
0

2.75∗∗∗
1.00∗∗∗
0.88∗∗∗

0
−5.00∗∗∗

0

3.25∗∗∗
1.14∗∗∗
0.88∗∗∗
5.31∗∗

−5.00∗∗
0

3.20∗
1.23∗∗
0.80∗∗
5.19∗

−4.90∗
−0.26

000 1054 888 886 919 1002 1039 1060
001 3323 3342 3335 3457 3220 3338 3317
010 264 281 280 247 316 279 258
011 913 1055 1053 930 1017 898 919
100 641 757 759 726 644 617 635
101 2817 2847 2855 2731 2969 2841 2823
110 207 239 240 272 204 231 213
111 1090 899 902 1025 938 1066 1084
SSE — 100 143 100 001 59 925 73 328 3296 329

Proof.

pr [a(1), a(2), . . . , a(n)]

= eλ·g(s1
a(1)s

2
a(2)···sn

a(n))∑
j (1)∈A1 · · · ∑ j (k)∈An eλ·g(s1

j (1)s
2
j (2)···sn

j (n))

= eλ·∑n
i=1 si

a(i )∑
j (1)∈A1 · · · ∑ j (n)∈An eλ·∑n

i=1 si
j (i )

=
∏n

i=1 eλ·si
a(i )∑

j (1)∈A1 · · · ∑ j (n)∈An

∏n
i=1 eλ·si

j (i )

=
∏n

i=1 eλ·si
a(i )∏n

i=1

(∑
j (i )∈Ai eλ·si

j (i )

)
=

n∏
i=1

eλ·si
a(i )(∑

j (i )∈Ai eλ·si
j (i )

)
=

n∏
i=1

pr [a(i )].

This completes the proof. �

4.2.1. Additive relaxation
Proposition 1 will be used in conjunction with our find-
ings from Section 3 to inform what types of joint attraction
functions should be considered. Proposition 1 showed that
independence is equivalent to a purely additive relation-
ship from s E

i , s D
j , sS

k to s EDS
i jk in the context of the logit rule.

Hence, relaxing this assumption by adding coefficients and
cross-terms to the pure additive form will relax the assump-
tion of independence. We use the general model

s EDS
i jk = θEs E

i + θDs D
j + θSsS

k + θEDs E
i s D

j + θESs E
i sS

k

+θDSs D
j sS

k + θEDSs E
i s D

j sS
k , (2)

to estimate the parameters θ = (θE, θD, θS, θED, θES, θDS)′,
by an Ordinary Least Squares (OLS) approach. The results
are displayed in Table 6, where p-values are computed using
the Wald test from the observed Fisher information, and
significance is denoted by ∗∗∗ for the 0.01 level, ∗∗ for the
0.05 level, and ∗ for the 0.10 level. The right-most column
of Table 6 shows the most flexible model with coefficients
for all two-way interactions. However, the interaction be-
tween diet and smoking is insignificant, consistent with
our previous findings. Therefore, this interaction term was
dropped from the final joint attraction function model,
shown in column 7 of Table 6. Columns 3 to 6 illustrate
how progressively relaxing the pure additive assumption of
independence increasing the predictive ability of the joint
attraction function.

Although this linear joint attraction function with inter-
actions (2) (herein JAF1) appears to capture dependencies
to predict the observed behavior, the parameters estimated
are difficult to interpret. In other words, what is the in-
terpretation of a positive coefficient for the interaction be-
tween exercise and diet but a negative coefficient between
exercise and smoking? In order to obtain more interpretable
results, we introduce another joint attraction function.

4.2.2. Behavioral consistency
Results from our models of conditional independence
showed the increased likelihood of consistently healthy (un-
healthy) behaviors relative to independence. Building on
these previous results, and seeking to improve on the in-
terpretation of the model parameters, we also estimate the
following joint attraction model:

s EDS
i jk = θEs E

i + θDs D
j + θSsS

k + θED1i= j + θES1i=k. (3)

This model is designed to capture the increased attrac-
tion of (un)healthy smoking and diet behaviors when ex-
ercise behavior is (un)healthy. Equation (3) achieves this
by increasing the joint attraction to behavior i jk by θED
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Modeling dependence in health behaviors 7

Table 7. Behavioral consistency joint attraction functions for pre-
dicting joint behaviors

Behavior Data

θE
θD
θS

θED
θES

=

1
1
1
0
0

1.09∗∗
1.00∗∗∗
1.02∗∗∗
0.06∗∗
0.06∗∗

000 1054 888 1039
001 3323 3342 3339
010 264 281 279
011 913 1055 898
100 641 757 617
101 2817 2847 2841
110 207 239 231
111 1090 899 1066
SSD – 100 143 3292

when exercise and diet behaviors are consistent (i.e., when
i = j ) and increasing the joint attraction by θES when ex-
ercise and smoking behaviors are consistent (i.e., when
i = k). We again estimate parameters by the approach
OLS and the results are reported in Table 7, where now
θ = (θE, θD, θS, θED, θES)′.

These results show that joint behaviors that are con-
sistently healthy (or unhealthy) receive attraction boosts
through the individual’s dependence mechanism relative to
their inconsistent alternatives. This second joint attraction
function (3) (herein JAF2) matches the predictive power of
JAF1 (2) while producing more easily interpreted results.
For both of the joint attraction functions presented we have
found the predictive ability to be robust to the attraction
normalization and SCF parameter, λ, chosen. The pos-
sibility remains that other nonlinear joint attraction func-
tions could be more sensitive to the normalization and SCF
chosen.

4.2.3. Validation of joint attraction functions
Similar to before, we validate the joint attraction function
models by splitting our data set into training (75%) and
testing (25%) subsamples. Table 8 reports the mean and
standard error of the SSEs of squared errors in the test-
ing data sample with parameters estimated from the train-
ing sample over 1000 subsamples. Each joint attraction
function reduces the error of the independence-equivalent
joint attraction function by over 50%. The second func-
tional form (3), based on behavioral consistency, signif-
icantly outperforms the first, with a mean reduction in

Table 8. Standard errors on testing data by joint attraction func-
tions and copulas

IND JAF1 JAF2 CF CC

SSE 6895.5 3056.8 2118.3 1721.9 1741.8
SESSE 66.8 63.3 32.3 35.9 35.4

error of 69% relative to independence. Again the perfor-
mance of Frank’s and Clayton’s copula models of depen-
dence are shown for comparison. Both copulas appear to
fit the dependence patterns better than the joint attraction
approach.

4.3. Longitudinal validation of dependence models

We used each model {CIAD, CIMD, JAF1, JAF2} with
parameters estimated from the ARIC data in Table 1 to
predict joint behaviors from a second time period in the
ARIC data. Our results appear in Table 9. The only model
that does not improve on the assumption of independence
is JAF1. This places some doubt as to the generality of the
functional form and estimates of this approach. The other
three models predict joint behaviors with significantly less
error than independence. The second joint attraction func-
tion based on behavioral consistency (3) and the multi-
plicative conditional probability model each have less than
a third of the error of independence, whereas the additive
conditional probability model has less than half of the error.
Although our cross-validation exercise from Table 5 could
not distinguish between the two conditional independence
models, these results indicate that the CIMD model may be
a more generalizable model of dependence than CIAD. The
copula perform the best of all of the tested models; one ex-
planation for this is that these single-parameter approaches
are less prone to over-fitting.

5. Simulation study

To study the properties of the dependence models over
a broader range of possible binary outcomes and correla-
tions, we conducted a simulation study. In order to simulate
multi-dimensional binary outcomes, we used the method
of Emrich and Piedmonte (1991), which has the ability to
generate a wide range of positive and negatively correlated
data (Chaganty and Joe, 2006). For simplicity and compa-
rability with the results generated from the ARIC data set,
we simulated data sets of three correlated binary outcomes
with 10 000 observations. A randomly selected mean vector
(p1, p2, p3) ∈ [0.1, 0.9]3 and pairwise correlation,

di j ∈
[

max

{
−

(
pi p j

qi q j

)1/2

, −
(

qi q j

pi p j

)1/2
}

,

min

{
−

(
pi q j

qi p j

)1/2

, −
(

qi p j

pi q j

)1/2
}]

, qi = 1 − pi ,(4)

which emit a positive definite � matrix (see Emrich and
Piedmonte (1991)), were used to generate the data set at
each iteration. Similar to before, the performance of each
model estimated using a 75% derivation subsample was
measured by the SSE values predicting outcomes in the 25%
testing subsample. The results comparing the five models,
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8 Pope et al.

Table 9. Period 2 validation: predicting joint behaviors by dependence models, joint attraction functions, and copulas

Behavior Data IND CIAD CIMD JAF1 JAF2 CF CC

000 773 571 696 702 535 661 687 699
001 2998 2955 2982 3048 2773 2938 3030 3034
010 246 302 324 307 282 297 309 310
011 1372 1563 1390 1334 1459 1320 1362 1346
100 455 521 398 425 436 425 413 403
101 2514 2695 2657 2662 2888 2705 2610 2604
110 194 276 440 252 254 266 259 256
111 1757 1426 1620 1578 1681 1696 1638 1657
SSE — 235 796 115 480 70 996 265 306 67 911 41 872 36 338

independence, additive dependence, multiplicative depen-
dence, and the two joint attraction functions, over 1000
simulated data sets are displayed in Table 10. Similar to the
case of the ARIC health behavior data, we find that the
models of conditional dependence perform quite similarly
and significantly improve on the assumption of indepen-
dence. Also, similar to before, we find that JAF1 does not
improve a modeler’s ability to predict joint behaviors over
an assumption of independence. The second joint attrac-
tion function also does not improve on the assumption of
independence and in fact performs the worst in the simula-
tion study. The result is expected, however, as JAF2 lever-
aged the insight from the health domain that consistently
(un)healthy behaviors occur with increased frequency. Our
simulated distributions impose no such relationship on the
data. Our interpretation is that joint attraction functions
can be used when insights into the process governing the
dependence between variables can be identified (e.g., from
subject matter experts). This conclusion is important in the
healthcare domain, where insights from practitioners, who
often have deep experiential knowledge of dependency pat-
terns, can be used to model dependence between health
outcomes and behaviors. The copulas also significantly im-
prove on the assumption of independence, on par with the
additive and multiplicative dependence models. Given our
findings that the dependence models and the copulas per-
form similarly, we prefer the simplicity of the dependence
models, which are parameterized via straightforward statis-
tics and computations, over the copulas’ more complicated
application and parameterization requiring maximum like-
lihood optimization.

Table 10. Simulation study: predicting joint behaviors by depen-
dence models, joint attraction functions, and copulas

Model IND CIAD CIMD JAF1 JAF2 CF CC

SSE 182 297 46 899 46 989 249 625 284 684 46 624 51 345
SESSE 5425 2334 2334 10 563 12 548 2333 2482

6. Conclusions

This article modeled dependencies in health behaviors that
affect healthcare costs. These dependencies have impli-
cations on benefit designs, policy laws, and regulations
involving both the private and public sectors. The main
contributions of this article are two general approaches
for modeling dependence between multiple behaviors that
can be used to predict dependence outside a derivation
sample: additive and multiplicative models of conditional
probabilities and joint attraction functions. We established
a relationship between these two approaches and estimated
models of the dependence between diet, exercise, and smok-
ing behaviors. Understanding the dependencies between
behavioral risk factors such as these may allow health-
care providers and policy makers to reduce the costs of
healthcare and/or improve the quality by better under-
standing the effects of interventions. For example, since the
control of diet, exercise, and smoking behaviors is crit-
ical to the prevention and control of chronic diseases,
understanding dependencies such as those identified in
this article would place an increased benefit on modi-
fying a consumer’s exercise behavior. Both of the pro-
posed approaches improved prediction of observed com-
bined exercise, diet, and smoking behavior relative to the
more analytically convenient assumption of independence;
however, both methods rely on features that may not be
present in all application domains. The models of de-
pendence through conditional probabilities in this article
leveraged conditional independence observed in the data.
Compared to modeling dependence through copulas, the
additive and multiplicative dependence models introduced
show similar performance in terms of prediction error in
both in the ARIC data as well as our simulation study.
Given these results, and the relative ease of implementa-
tion and interpretation, we believe the additive and multi-
plicative dependence models presented to be an attractive
option for modeling dependence. Although a model of con-
ditional independence will generalize a model of pure inde-
pendence in any case, the amount of improvement relative
to the assumption of independent will naturally depend on
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Modeling dependence in health behaviors 9

the validity of the conditional independence assumption.
Another disadvantage of the conditional probability ap-
proach relative to the joint attraction approach is the need
to constrain parameters to ensure meaningful probabilities.
Our simulation study clarified that the ability of the joint
attraction functions to model dependence relied on our
ability to identify properties (e.g., behavioral consistency)
of the dependence process. In larger or more complicated
data sets, such insights may be hard to identify, making the
specification of an appropriate joint attraction function dif-
ficult. Another limitation of the joint attraction approach
is the need to specify a stochastic choice function.

Another approach to adjudicating between the proposed
methods is to consider the “physical” process in the con-
text of the dependence being modeled. For example, is it
more reasonable that consumers’ attractions to combined
behaviors are a priori adjusted according to their consis-
tency or that consumers form probabilities of each sepa-
rate behavior and then adjust these probabilities based on
the outcome of a dominant behavior? In the case of health
behaviors, both alternatives seem plausible. The first pos-
sibility, modeled by a joint attraction function, is a type
of premeditated dependence. For example, the consumer
would decide: I want to maximize my health by exercising,
smoking will inhibit my lungs from delivering oxygen to
my muscles so I will not smoke, and I will need proper
nutrition to maximize my muscle function so I will follow
a healthy diet. The second type of dependence modeled
through conditional probabilities is based on the reality
that each separate behavior is not chosen simultaneously
and that the sequential nature of the behaviors allows pref-
erences for consistency. For example, the consumer thinks:
Now that I have exercised and lost weight and feel better, I
need to change my diet to a healthy one to keep the gains I
have made. Further research into the cognitive processes of
individuals as they balance the long-term risks and rewards
of multiple health behaviors from immediate consequences
(e.g., higher tobacco taxes and higher premiums for to-
bacco users versus sustained long-term cessation; increased
sense of well-being with exercise versus satisfaction from
consuming certain high-fat foods) is needed to elucidate
which of these postulates is more accurate for each individ-
ual. Confirming that some individuals are more affected
by interdependent choices compared to others that have
an independent focus would have important implications
for public policy on population versus individual initia-
tives of health behavior incentives; for example, whether
to reward the community for going smoke-free versus
individual health insurance policy premiums of those who
are tobacco-free.

Though motivated by healthcare behaviors, our strate-
gies for dealing with independence could be applied in any
domain with dependent uncertainties. The particular in-
sights into behavioral dependencies have implications for
reducing costs and improving health relative to diseases for
which diet, exercise, and smoking are risk factors. For ex-

ample, based on our results it may be possible to indirectly
modify the risk factors of smoking and diet by changing an
individual’s exercise behavior. Althought future research is
needed to corroborate this claim, the non-independence of
these behaviors is clear. Therefore models of dependence
such as those presented here should be incorporated into
policy and decision-making models.
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Appendix

G-test for independence

The G-test for independence (McDonald, 2009) uses the
test statistic G = ∑

i j Oi j × ln(Oi j/Êi j ) but otherwise is ap-
plied similarly to the χ2 test. Table A1 shows the results of
the G-test applied to the ARIC data from Table 1.

Table A1. G-test for pairwise independence between diet (D),
exercise (E), and smoking (S)

Test pair Third behavior χ2 p-Value

DS 0 1.41 0.235
DS 1 4.35 0.037
DS C 7.76 0.005
ES 0 35.36 0.000
ES 1 16.75 0.000
ES C 54.11 0.000
ED 0 5.77 0.016
ED 1 44.11 0.000
ED C 51.88 0.000
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