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Convex Nonparametric Least Squares (CNLSs) is a nonparametric regression method that does not require
a priori specification of the functional form. The CNLS problem is solved by mathematical programming
techniques; however, since the CNLS problem size grows quadratically as a function of the number of
observations, standard quadratic programming (QP) and Nonlinear Programming (NLP) algorithms are
inadequate for handling large samples, and the computational burdens become significant even for rel-
atively small samples. This study proposes a generic algorithm that improves the computational perfor-
mance in small samples and is able to solve problems that are currently unattainable. A Monte Carlo
simulation is performed to evaluate the performance of six variants of the proposed algorithm. These
experimental results indicate that the most effective variant can be identified given the sample size
and the dimensionality. The computational benefits of the new algorithm are demonstrated by an empir-
ical application that proved insurmountable for the standard QP and NLP algorithms.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Convex Nonparametric Least Squares (CNLSs) is a nonparametric
regression method used to estimate monotonic increasing (decreas-
ing) and convex (concave) functions. Hildreth introduced the CNLS
concept in his seminal work (1954), while Hanson and Pledger
(1976) were the first to prove the statistical consistency of the CNLS
estimator in the single regression case. The method has attracted
attention primarily from statisticians, see Mammen (1991),
Mammen and Thomas-Agnan (1999), and Groeneboom et al.
(2001). Statistical properties such as consistency, Lim and Glynn
(2012), Seijo and Sen (2012), and uniform convergence properties,
Aguilera et al. (2012), have been shown. Functions of this type com-
monly arise in economics. For example, Varian (1982, 1984) describes
monotonicity and convexity as standard regularity conditions in the
microeconomic theory of utility and production functions.

Recently, CNLS has attracted considerable interest in the
literature of productivity and efficiency analysis (Kuosmanen and
Johnson, 2010), and we will focus our discussion on this domain.
The two most common ways to estimate a frontier production
function are Stochastic Frontier Analysis (SFA) and Data Envelop-
ment Analysis (DEA) (e.g., Fried et al., 2008). The former one is a
parametric regression method that requires a prior specification
ll rights reserved.
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of the functional form of the frontier. The latter one is a nonpara-
metric mathematical programming approach that avoids the func-
tional form assumption, but also assumes away stochastic noise.
Attractively, CNLS avoids the functional form assumption, building
on the same axioms as DEA, but it also takes into account noise.
CNLS estimates an average production function. However, CNLS
can be used in a two-stage approach called Stochastic semi-
Nonparametric Envelopment of Data (StoNED) to combine the
main benefits of both DEA and SFA (Kuosmanen and Kortelainen,
2012). Since Kuosmanen (2008) introduced CNLS to the literature
of productive efficiency analysis, several extensions to the method-
ology (Johnson and Kuosmanen, 2011 and Johnson and Kuosma-
nen, 2012; Mekaroonreung and Johnson, 2012) and empirical
applications have been reported in such areas as agriculture
(Kuosmanen and Kuosmanen, 2009), power generation
(Mekaroonreung and Johnson, 2012), and electricity distribution
(Kuosmanen, 2012). However, the computational complexity of
CNLS presents a significant barrier for large-sample applications.
This study focuses on this barrier and proposes a generic algorithm
to reduce the computational time to solve the CNLS problem.2

A variety of work has been done on the computational aspects
of CNLS. Hildreth (1954) developed an algorithm based on
Karush–Kuhn–Tucker (KKT) conditions that can potentially take
an infinite number of steps to identify the optimal solution.
2 The proposed method could potentially benefit a variety of nonparametric
methods which impose shape constraints on the underlying function for example the
estimator described in Du et al. (in press). Here we focus on the least squares
estimation method CNLS.

or Convex Nonparametric Least Squares. European Journal of Operational

http://dx.doi.org/10.1016/j.ejor.2012.11.054
mailto:cylee@mail.ncku.edu.tw
mailto:ajohnson@tamu.edu
mailto:e.moreno@tamu.edu
mailto:Timo.Kuosmanen@aalto.fi
mailto:Timo.Kuosmanen@aalto.fi
http://dx.doi.org/10.1016/j.ejor.2012.11.054
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor
http://dx.doi.org/10.1016/j.ejor.2012.11.054


2 C.-Y. Lee et al. / European Journal of Operational Research xxx (2013) xxx–xxx
Wilhelmsen (1976), and Pshenichny and Danilin (1978) provided
algorithms projecting the data points of the dependent variable
to the faces of a polyhedral cone; both algorithms converge in a fi-
nite number of iterations. Wu (1982) offered a simpler solution
that also converges in a finite number of iterations. Dykstra
(1983) proposed an iterative algorithm that is based on the projec-
tion onto the closed convex cones and minimizes a least squares
objection function subject to concave restrictions. Goldman and
Ruud (1993), and Ruud (1995) proposed an approach using a dual
quadratic programming (QP) problem. They used a large number of
parameters to cover all the permissible functions and obtained a
smooth multivariate regression using a projection technique and
structural restrictions of monotonicity and concavity. Fraser and
Massam (1989) presented an algorithm to find the least square
estimate of the mean in a finite number of steps by dividing the
cone into subspaces. Meyer (1999) generalized Fraser and Mas-
sam’s study and extended the algorithm to the case of more con-
straints than observations. Some related work exists applying
bagging and smearing methods to convex optimization, Hannah
and Dunson (2012). Recently, Kuosmanen (2008) transformed the
infinite dimensional CNLS problem to a finite dimensional line-
arly-constrained quadratic programming problem (QP),3 which en-
ables one to solve the CNLS problem by using standard QP
algorithms and solvers (such as CPLEX, MINOS, MOSEK). However,
the number of constraints of the QP problem grows as a quadratic
function of the number of observations. Standard QP algorithms
are limited by the number of constraints, thus the computational
burden when using quadratic programming to solve the CNLS prob-
lem is challenging even with relatively small sample sizes.

In light of the computational issues, the purpose of this study is
to develop a more efficient approach to model the concavity con-
straints in the QP. For this purpose we use Dantzig et al.’s (1954,
1959) strategy to solve large scale problems by iteratively identify-
ing and adding violated constraints (modern cutting plane meth-
ods for integer programming are based on this seminal work).
Indeed, we show that Dantzig et al.’s strategy is not only useful
when solving NP-hard problems4 (he used the strategy to solve
the travelling salesperson problem), but is also useful when solving
large scale instances of problems that are solvable in polynomial
time. Specifically, the underlying idea of the proposed generic algo-
rithm is to solve a relaxed CNLS problem containing an initial set of
constraints, those that are likely to be binding, and then iteratively
add a subset of the violated concavity constraints until a solution
that does not violate any constraint is found. In other words, the gen-
eric algorithm significantly reduces the computational cost to solve
the CNLS problem by solving a sequence of QPs that contain a con-
siderably smaller number of inequalities than the original QP formu-
lation of the CNLS problem. Therefore, this algorithm has practical
value especially in large sample applications and simulation-based
methods such as bootstrapping or Monte Carlo studies.

The remainder or this paper is organized as follows, Section 2
introduce nonparametric regression, discusses the relationship be-
tween the Afriat inequalities and convex functions, and presents
the QP formulation of the CNLS problem. Section 3 presents an
algorithm to solve CNLS by identifying a set of initial constraints
and iteratively adding constraints. Section 4 investigates the per-
formance of the algorithm through Monte Carlo simulations. Sec-
tion 5 presents an application that was previously too large to
3 Hereafter we will refer to a linearly-constrained quadratic programming problem
simply as a quadratic program (QP).

4 An algorithm is polynomial time if the algorithm’s running time is bounded from
above by a polynomial expression in the size of the input for the algorithm; for the
purposes of this paper the inputs are the number of observations and the number of
components of the input vector. NP-hard means non-deterministic polynomial-time
hard; in practical terms, most computer scientists believe these problems cannot be
solved in polynomial time.
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solve using the standard formulation of CNLS and describes the
performance of the algorithm and Section 6 concludes.

2. CNLS and Afriat’s theorem

In this section we will present the quadratic programming for-
mulation of CNLS. An example will illustrate the general result that
typically much fewer constraints are needed to solve CNLS than are
included in the standard formulation. The function estimated by
CNLS is typically not unique; however, the lower concave envelope
of the function is. Thus we will present methods to estimate the
lower concave envelope of the set of functions that are optimal
to the CNLS formulation. We will also review the results of Afriat
(1972) in which he proposed methods to impose convexity on
the estimation of a production function. Afriat’s results are impor-
tant because they will provide insight into identifying binding con-
straints in the quadratic programming formulation of CNLS.

Consider a production function with shape restrictions that is
estimated via CNLS, and specify a regression model

y ¼ f ðxÞ þ e

where y is the dependent variable, x is a vector of input variables,
and e is a random variable satisfying E(ejx) = 0. CNLS can be used
to estimate any function that belongs to the class of functions, F ,
satisfying monotonicity and concavity. As an example, in this paper
we will primarily focus on the well know Cobb–Douglas functional

form, f ðxÞ ¼
QM

m¼1xðbmÞ
m . Note if

PM
m¼1bm 6 1, then the Cobb–Douglas

function belongs to the class F . The specification of the Cobb–Doug-
las function we use in our Monte Carlo simulations for the data gen-

eration process is y ¼
QM

m¼1x
0:8
Mð Þ

m .5 Note, the additive specification of
the disturbance term in our regression model does not allow one to
estimate the underlying Cobb–Douglas function by applying ordin-
ary least squares (OLSs) to the log-transformed regression equation.
In this case, the Cobb–Douglas function should be estimated by non-
linear regression. However, the additive version of the Cobb–Douglas
regression model has been widely used, including such seminal work
as Just and Pope (1978).

The production function, f(x), could be estimated by assuming a
parametric functional form and applying OLS or maximum likeli-
hood methods; however in parametric functions such as translog,
the regularity conditions (monotonicity and concavity) are typi-
cally difficult to impose (Henningsen and Henning, 2009). Recent
developments in the nonparametric regression literature now al-
low the estimation of production functions consistent with mono-
tonicity and concavity as described below.

2.1. CNLS estimation

Nonparametric regression is a method that does not specify the
functional form a priori. The continuity, monotonicity and concav-
ity constraints are enforced in the least squares estimation method
CNLS (Hildreth, 1954; Kuosmanen, 2008),

mina;b;e

Xn

i¼1

e2
i

s:t:
yi ¼ ai þ b0ixi þ ei for i ¼ 1; . . . ;n ðaÞ
ai þ b0ixi 6 ah þ b0hxi for i;h ¼ 1; . . . ;n and i – h ðbÞ
bi P 0 for i ¼ 1; . . . ;n; ðcÞ

ð1Þ
where yi denotes the output, xi = (xi1, . . . , xiM)

0
is the input vector,

and ei is the disturbance term that represents the deviation of firm
5 In the online appendix we consider a constant returns-to-scale version,
y ¼

QM
m¼1x

1
Mð Þ

m .
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i from the estimated function. Constraints (1a) represent a basic lin-
ear hyperplane and estimates intercept ai and slope bi = (bi1,
. . . ,bim)T parameters characterizing the marginal products of inputs
for each observation. Constraints (1b) impose concavity using Afri-
at’s inequalities. Finally, constraints (1c) impose monotonicity on
the underlying unknown production function.

In general the parameters ai; b0i
� �

estimated using CNLS in for-
mulation (1) are non-unique; however the fitted values,
ŷi ¼ âi þ b̂0ixi, are unique (Groeneboom et al., 2001). Thus one can
calculate a lower concave envelope for the production function
estimated using CNLS. Using the results from problem (1),
Kuosmanen and Kortelainen (2012) propose to solve problem (2)
to estimate the lower concave envelope.
Fig. 1. The CNLS estimate, includes only seven unique hyperplanes (dashed lines).
min
ale ;ble

ale;i þ b0le;ixi

s:t: ale;i þ b0le;ixi P ŷi for i ¼ 1; . . . ;n ð2Þ
Here we us the notation ale,i and b0le;i to indicate these parameters
are reestimated in (2) to find the lower concave envelope and
may be distinct from the parameters estimated in (1). The optimal
solution to problem (2) is unique and is also an optimal solution to
problem (1). This uniqueness facilitates the analysis of the generic
algorithm (described in the following section) and, thus, hereafter
we refer to the optimal solution to problem (2) as the optimal solu-
tion to the CNLS problem.

We note that the models (1) and (2) can be combined in a single
optimization problem by using a multi-criteria objective function
and non-Archimedean weights to make the minimization of
squared errors lexicopgraphically more important, but the use of
a non-Archimedean has caused considerable debate in the closely
related Data Envelopment Analysis (DEA) literature (see, for exam-
ple, Boyd and Fare, 1984; Charnes and Cooper, 1984). Thus we pre-
fer to maintain the two models in which model (1) estimates the
fitted values ŷi and model (2) calculates the lower concave enve-
lope. The fitted values are unique (Groeneboom et al., 2001); how-
ever, the set of hyperplanes need not be unique. Thus the lower
concave envelope is consistent with the minimum extrapolation
principle, Banker et al. (1984), and provides a unique identification
of the hyperplanes (Kuosmanen and Kortelainen, 2012).

As is clear from formulation (1) and (2), CNLS estimates the un-
known production function using n hyperplane segments. How-
ever, typically the number of unique hyperplane segments is
much lower than n (Kuosmanen and Johnson, 2010), which pre-
sents an opportunity to reduce the number of constraints and de-
crease the time required to solve problem (1). To illustrate this
phenomenon and the CNLS estimator, we generated 100 observa-
tions of a single-input single-output equation, y = x0.8 + v. The
observations, x, were randomly sampled from a Uniform [1,10] dis-
tribution and v was drawn from a normal distribution with stan-
dard deviation of 0.7. Fig. 1 shows the obtained CNLS estimator.
Note that, in this case, the CNLS curve is characterized by seven un-
ique hyperplanes (dashed lines) and the other 93 hyperplanes esti-
mated are redundant (that is, even though we are estimating 100
hyperplanes, 93 of the estimated hyperplanes are identical to one
of the 7 hyperplanes that form the lower concave envelope).6
6 CNLS alone is used to estimate an average production function and is the focus of
our paper. However, StoNED (an efficiency analysis method) uses CNLS in the first
stage (Kuosmanen and Kortelainen, 2012) and the Jondrow decomposition (Jondrow
et al., 1982) in the second stage. The Jondrow decomposition assumes homoskedas-
ticity of both noise and inefficiency, thus the frontier production function is simply a
parallel shift of the function estimated considering only noise. The shape of
production function is unchanged, and thus does not affect the computational
complexity.
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2.2. Afriat’s theorem

The method to impose concavity in CNLS is based on Afriat’s
theorem (Afriat, 1967; Afriat, 1972), which is a fundamental result
in microeconomic theory (e.g., Varian, 1982, Varian, 1984). Afriat’s
theorem can be used for two purposes: (1) nonparametrically test-
ing if a given set of data satisfies the regularity conditions (concav-
ity) implied by the economic theory (Varian, 1984). If this is indeed
the case, Afriat’s numbers (defined in Theorem 1) can be used for
constructing inner and outer bounds for the possible functions f
that can describe the data. Or alternatively (2) Afriat’s inequalities
(defined in Theorem 1) have been used in the context of nonpara-
metric regression to enforce global curvature conditions (Kuosma-
nen and Kortelainen, 2012). There are many potential applications
in areas such as demand analysis, production analysis, and finance.

Kuosmanen (2008) transformed the infinite dimensional CNLS
problem to the finite dimensional QP problem using Afriat’s
inequalities defined in Afriat’s theorem:

Theorem 1. (Afriat’s Theorem7):If n is the number of observations
and m is the number of inputs, the following conditions are equivalent:

(i) There exists a continuous globally concave function f:
Rm ? R that satisfies yi = f(xi) in a finite number of points
i = 1, . . . ,n.

(ii) There exist finite coefficients (from now Afriat’s numbers)
ai,bi = (bi1 . . . bim)0 such that yi ¼ ai þ b0ixi for i ¼ 1; . . . ; n,
that satisfy the following system of inequalities (henceforth
Afriat’s inequalities):
7 The
(1972) o

or Con
ai þ b0ixi 6 ah þ b0hxi for i; h ¼ 1; . . . ;n and i – h:
The above statement of Afriat’s theorem refers to f as a classic
concave production function, but other applications (e.g., utility
functions, cost/expenditure functions, distance functions, etc.) are
equally possible. The following properties are derived from Afriat’s
theorem:

(1) Instead of concavity, convexity is easily implemented by
reversing the sign of inequalities in condition ii above.

(2) Strict concavity (convexity) is obtained by using strict
inequalities in condition ii above.

(3) Monotonicity can be imposed independently by inserting
further constraints bi P 0,"i (increasing) or bi 6 0, "i
(decreasing).
re are alternative equivalent statements of Afriat’s theorem, see e.g., Afriat
r Varian (1982) or Fostel et al. (2004); however we follow Kuosmanen (2008).
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In the context of nonparametric regression, n should be
generally large to accurately estimate a function in high dimen-
sions; this is often referred to as the curse of dimensionality
(Yatchew, 1998). The system of Afriat’s inequalities, presented in
condition ii above, involves n(m + 1) unknown variables and
n(n � 1) inequality constraints, where the number of observations,
n, is usually much larger than the number of inputs, m. When the
data contain a large number of observations, imposing Afriat’s
inequalities can become computationally demanding. For example
when n = 100, the number of inequalities is 9900.

3. A generic algorithm for CNLS model reduction

This section develops a generic algorithm based on the seminal
work of Dantzig et al. (1954, 1959) to address the computational
burden of solving CNLS. Specifically, Dantzig et al. proposed the fol-
lowing approach of solving large-scale problems: Solve a relaxed
model containing only a subset of the constraints, and iteratively
add violated constraints to the relaxed model until an optimal
solution to the relaxed model is feasible for the original problem.
Recall that, given n observations, CNLS requires n (n � 1) concavity
constraints. If n is large, the number of concavity constraints is sig-
nificant, because the performance of standard QP algorithms is
limited by the number of constraints. To address this issue we
use Dantzig et al.’s strategy: we start with a set of inequalities that
are likely to be satisfied at equality in the optimal solution, and
iteratively add violated constraints to the relaxed model until the
optimal solution to the relaxed model is feasible for the CNLS prob-
lem. Hereafter we define relevant constraints as the set of inequal-
ities from problem (1) that are satisfied at equality by the optimal
solution to problem (2).8

The generic algorithm iterates between two operations: (A)
solving model (1) but including only a subset V of the constraints
in (1b), and (B) verifying whether the obtained solution satisfies
all of the constraints in (1b); if it does then the algorithm termi-
nates, otherwise V is appended with some of the violated con-
straints and the process is restarted. Section 3.1 gives two
strategies to identify an initial subset of constraints that includes
a large proportion of the relevant constraints with a relatively high
level of accuracy. Section 3.2 describes three strategies to deter-
mine the subset of violated constraints to be added at each itera-
tion. In order to give an algorithmic description of the generic
algorithm, we use the following formulation, which we refer to
as the relaxed CNLS problem (RCNLS).

min
a;b;e

Xn

i¼1

e2
i

s:t: yi ¼ ai þ b0ixi þ ei for i ¼ 1; . . . ;n ðaÞ
ai þ b0ixi 6 ah þ b0hxi 8ði;hÞ 2 V ðbÞ

bi P 0 for i ¼ 1; . . . ;n; ðcÞ

ð3Þ

Here V is a subset of all the observation pairs; thus the concavity
constraints (3b) are a subset of all the concavity constraints (1b).

Generic Algorithm

1. Let t = 0 and let V be a subset of the observation pairs.

2. Solve RCNLS to find an initial solution, að0Þi ; b
ð0Þ
i

� �
:

3. Do until aðtÞi ; b
ðtÞ
i

� �
satisfies all concavity constraints (Eqs. (1b)):

3.1. Select a subset of the concavity constraints that aðtÞi ; b
ðtÞ
i

� �

violates and let V(t) be the corresponding observation pairs.
3.2. Set V = V [ V(t).
8 As noted in Section 2.2, this solution is also an optimal solution to problem (1),
and has the advantage of being unique (thus the relevant constraints are well-
defined).
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3.3. Solve RCNLS to obtain solution aðtþ1Þ
i ; b

ðtþ1Þ
i

� �
:

3.4. Set t = t + 1.

Proposition 1. The generic algorithm obtains an optimal solution to
CNLS (problem (1)).

Proof. The result follows from the following two observations: (1)
For any t, at

i ; b
t
i

� �
is an optimal solution to a relaxation of problem

(1). (2) The termination condition for the generic algorithm (step 3)
guarantees that, at termination, at

i ; b
t
i

� �
is a feasible solution of

problem (1).

3.1. Approaches to determine the set of initial constraints

Critical to the generic algorithm’s performance is the identifica-
tion of a set of initial concavity constraints that includes a large
proportion of the relevant constraints. This section describes two
methods for constructing such a set of initial constraints.

3.1.1. Elementary Afriat approach
For intuition, let us start from a univariate case m = 1. The num-

ber of unknowns is only 2n, but we still have n(n � 1) inequality
constraints. It is possible to reduce the number of inequalities by
sorting the observed data in ascending order according to x. With-
out loss of generality, assume the data have been sorted as x1 6 x2 -
6 � � � 6 xn. In this case, it is easy to show the following:

Elementary Afriat’s theorem – univariate case (Hanson and Pled-
ger, 1976): The following conditions are equivalent:

(i) There exists a continuous globally concave function f: R ? R
that satisfies yi = f(xi) in a finite number of points i = 1, . . . ,n.

(ii) There exist finite coefficients ai, bi: yi = ai + bixi"i = 1, . . . ,n,
that satisfy the following system of inequalities (original
Afriat’s inequalities):
equaliti
10 Alte

analysis
because
correlat

for Con
ai þ bixi 6 ah þ bixi 8i; h ¼ 1; . . . ;n and i – h:
(iii) There exist finite coefficients ai, bi: yi = ai + bixi "i = 1, . . . ,n,
that satisfy the following system of inequalities (elementary
Afriat’s inequalities):9
bi 6 bi�1 8i ¼ 2; . . . ;n

ai P ai�1 8i ¼ 2; . . . ;n
Condition ii) involves n (n � 1) constraints, whereas condition
iii) requires only 2(n � 1) constraints. In the case of n = 100, the ori-
ginal conditions require 9900 inequalities, whereas our elementary
condition requires only 198 inequalities. Thus, a substantial de-
crease in the number of inequalities is possible by using the prior
ranking of the observed data and the transitivity of inequality rela-
tions. Moreover, note that imposing monotonicity in the single in-
put case, condition iii) requires only a single constraint bn P 0,
whereas imposing monotonicity in the general case, condition ii)
requires n �m constraints bi P 0 " i = 1, . . . ,n.

The elementary Afriat’s theorem motivates the following meth-
od for generating an initial set of constraints when the production
function being estimated has multiple inputs.10 Arbitrarily pick one
of the inputs (say, variable k) and index the observed data in ascend-
ing order according to the selected input (i.e., such that xi 6

kxi+1,
where the inequality compares only the kth entry of the input vector,
but the entire input matrix is sorted). Then, let the initial set of
es.
rnative methods such as kernel based methods or principle component
could also be used; however, we suggest the elementary Afriat approach
inputs are often highly correlated. If the inputs vectors are perfectly

ed, the elementary Afriat constraints would be sufficient to impose concavity.
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Histogram of the distances between all pairs related to one particular observation that correspond to relevant
          concavity constraints
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Fig. 2. The concavity constraints corresponding to nearby observations are significantly more likely to be relevant than those corresponding to distant observations.

C.-Y. Lee et al. / European Journal of Operational Research xxx (2013) xxx–xxx 5
observation pairs in V to be {(1,2), (2,3), . . . , (i � 1, i),
(i, + 1), . . . , (n � 1,n)}; thus, the explicit formulation for initial relaxed
CNLS problem is as follows:

min
a;b;e

Xn

i¼1

e2
i

yi ¼ ai þ b0ixi þ ei 8i ¼ 1; . . . ;n;

ai þ b0ixi 6 aiþ1 þ b0iþ1xi 8i ¼ 1; . . . ;n� 1;

bi P 0 8i ¼ 1; . . . ;n;

�������

8><
>:

9>=
>;

ð4Þ

In the Monte Carlo simulations described in Section 4, we refer
to the use of this strategy for determining the set of initial con-
straints as CNLSr.
3.1.2. Sweet spot approach
The sweet spot approach aims to predict the relevant concavity

constraints and uses these as the initial set of constraints. This ap-
proach is implemented as: for each observation i, include the con-
cavity constraints corresponding to the observations whose
distance11 to observation i is less than a pre-specified threshold va-
lue di (distance percentile parameter). The range between the zeroth
percentile and the dth

i percentile is defined as the sweet spot. Empir-
ically, we found that an effective value for di is the 3rd percentile of
the distances from all observations to observation i.12 If both ele-
mentary Afriat approach and sweet spot approach are applied to
identify initial set of constraints (sweet spot constraints), then we
will refer to the approach as CNLS+. The reminder of this section
motivates CNLS+.

As previously mentioned (and illustrated in Fig. 1), Kuosmanen
and Johnson, 2010 showed that the number of unique hyperplanes
to construct a CNLS production function is generally much lower
than n. From Eq. (1b), observe that, in the optimal solution of CNLS
(problem 1), the concavity constraints that are satisfied at equality
correspond to pairs of observations that share a hyperplane in the
CNLS function. Therefore only a small number of the concavity con-
11 This study uses the Euclidean norm measured in the M+1 dimensional space of
inputs and output to measure the distance between two observations. Alternatively
the distance could be measure in an M dimensional space, however, experimental
results indicated this did not have a significant effect in the computational time.

12 The 3rd percentile worked well in our Monte Carlo simulations. In the empirical
example given in Section 5, we test several different percentiles and show that indeed
the 3rd percentile works well.
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straints are relevant. Moreover, it is reasonable to assume that
observations that are close to each other are more likely to corre-
spond to relevant concavity constraints than those that are far
apart. The following simulation further motivates the idea that
the relevant concavity constraints correspond to pairs of nearby
observations.

We generated 300 observations of a two-input single-output
equation, y ¼ x04

1 x04
2 þ v . The observations, x1, x2, were randomly

sampled from a Uniform [1,10] distribution and v was drawn from
a normal distribution with standard deviation of 0.7. Then we
solved the CNLS problem (since it is not possible to directly solve
problem 1 with more than 200 observations, we solved it using
one of the algorithms herein proposed and based on Theorem 1
the results are equivalent) and identified the relevant constraints.
Fig. 2 shows a histogram of the distances between all pairs related
to one particular observation (black) and the histogram of the
distances between all pairs related to one particular observation
that correspond to relevant concavity constraints (white). One
can observe that indeed, as previously argued, the concavity
constraints corresponding to nearby observations are significantly
more likely to be relevant than those corresponding to distant
observations.
3.2. Strategies for selecting from the set of violated concavity
constraints

We propose three strategies to select the violated (concavity)
constraints (VCs) that are added in each iteration of the generic
algorithm. The first strategy, referred to as one-VC-added CNLS
(CNLS-O), is to select the most violated constraint from all concav-
ity constraints (See table 1 for the definition of most violated). This
strategy, in each iteration, adds at most one violated constraint to
the set V. The second strategy, referred to as group-VC-added CNLS
(CNLS-G), is to select, for each observation i, the most violated
constraint among the n � 1 concavity constraints related to obser-
vation i. This strategy, in each iteration, adds at most n � 1 violated
constraints to the set V. The last strategy, referred to as all-
VC-added (CNLS-A), is to select all the violated constraints. This
strategy adds at most (n � 1)2 violated constraints to the set V.
Table 1 shows the summary of these three strategies and provides
or Convex Nonparametric Least Squares. European Journal of Operational
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Table 1
Strategies for selecting from the set of violated concavity constraints.

Strategy Formula to identifying the violated constraints to add Upper bound on the # of VC added per iteration

CNLS-O (one-VC-added) max
i;h

at
i þ bt0

i xi � at
h þ bt0

h xi

� �n o
> 0 1

CNLS-G (group-VC-added) maxh at
i þ bt0

i xi � at
h þ bt0

h xi

� �n o
> 0 8i n

CNLS-A (all-VC-added) at
i þ bt0

i xi � at
h þ bt0

h xi

� �
> 0 8i;h (n � 1)2

Table 2
CNLS+-G significantly outperforms the other methods for two dimensional problems with at least 100 observations.

Number of observations Average run time measured in seconds (standard deviation)
CNLS CNLSr-O CNLSr-G CNLSr-A CNLS+-O CNLS+-G CNLS+-A

25 0.4 (0.02) 24.8 (1.81) 4.2 (0.26) 1.4 (0.09) 19.5 (2.22) 3.7 (0.65) 1.1 (0.17)
50 5.8 (0.61) 70.4 (2.69) 9.4 (1.38) 4.0 (0.80) 44.3 (5.72) 6.4 (0.90) 2.6 (0.73)

100 367.9 (40.93) 210.2 (10.04) 83.0 (12.32) 63.9 (13.32) 116.7 (9.40) 24.0 (5.77) 28.6 (11.81)
150 4168 (600.93) 474.6 (50.69) 393.9 (135.27) 292.6 (66.61) 158.4 (23.69) 30.6 (6.55) 98.0 (40.72)
200 N/A 953.7 (118.36) 1424 (180.32) 820.8 (371.21) 236.9 (37.67) 47.2 (12.12) 101.3 (22.31)
250 N/A 1779 (188.44) 2555 (861.06) 1344 (413.18) 392.9 (50.88) 62.8 (14.20) 131.2 (84.82)
300 N/A 3144 (445.20) 8084 (2519.76) 1833 (585.07) 672.2 (95.83) 93.4 (18.45) 172.6 (204.05)

N/A: system out of memory.
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the formulas to identify and quantify the violated constraints (VC)
to add.
4. Monte Carlo simulations

This section describes four simulation studies analyzing the
performance of the variants of the generic algorithm and compar-
ing them to directly solving CNLS (1). These experiments were per-
formed on a personal computer (PC) with an Intel Core i7 CPU
1.60 GHz and 8 GB RAM. The optimization problems were solved
in GAMS 23.3 using the CPLEX 12.0 QCP (Quadratically Constrained
Program) solver. The six variants analyzed are all the possible com-
binations between determining the initial constraint set (CNLSr

and CNLS+) and selecting the violated constraints to add (CNLS-O,
CNLS-G and CNLS-A). The first simulation study investigates the
Fig. 3. CNLS+-G has the least running time for
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performance of the algorithms as a function of the number of
observations. The second simulation study investigates the perfor-
mance of the algorithms as a function of the number of inputs. The
third simulation compares the algorithms by simultaneously vary-
ing the number of inputs and the number of observations. Finally,
the fourth simulation study aims to determine the largest problem
sizes that can be solved with the variants that were found to be the
most effective in the other three studies.

The first study assumed a two-input, one-output production
function, f ðxÞ ¼ x0:4

1 x0:4
2 , and the corresponding regression equation,

y ¼ x0:4
1 x0:4

2 þ v , where the observations x1 and x2 were randomly
sampled from a Uniform [1,10] distribution and v was drawn from
a normal distribution with standard deviation of 0.7. This study
simulates seven scenarios, each with different number of observa-
tions. Each of the rows in Table 2 correspond to one scenario and
give the average time, in seconds and standard deviation (shown
problems with at least 100 observations.

for Convex Nonparametric Least Squares. European Journal of Operational
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Fig. 4. CNLS+-G adds almost the same the number of constraints as CNLSr-O and CNLS+-O (which add the fewest constraints).
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in parenthesis) that each algorithm required to solve the problem.
The averages and standard deviations were obtained by simulating
each scenario 10 times.

Table 2 shows that CNLS+-G significantly outperforms the other
methods for two dimensional problems with at least 100 observa-
tions. An extended version of Table 2, Table 9, is shown in the
online appendix. Table 9 shows that: (1) CNLSr-O adds the least
number of constraints to construct the CNLS production function
but requires the most iterations which leads to longer computation
times; (2) conversely, CNLSr-A requires the least number of itera-
tions, but adds the most constraints; (3) the original CNLS model
generates 90,000 constraints for a problem with 300 observations,
but actually, on average, in such model only 1238 constraints are
relevant (including 938 concavity constraints). In the two input
case Figs. 3 and 4 illustrate the average running time and average
constraints needed, respectively, for each of the seven strategies
CNLS, CNLSr-O, CNLSr-G, CNLSr-A, CNLS+-O, CNLS+-G and CNLS+-A
while increasing the number of observations.

The second study assumed an M-input one-output production

function, y ¼
QM

m¼1x
0:8
Mð Þ

m þ v , where the observations xm were ran-
domly sampled form a Uniform[1,10] distribution and v was a
drawn from a normal distribution with standard deviation of 0.7.

This study simulates seven scenarios, each with a different
number of inputs. Each of the rows in Table 3 correspond to one
scenario and give the average time (in seconds) that each variant
required to solve the problem. The averages were obtained by sim-
ulating each scenario 10 times. Table 3 shows that CNLS+-G outper-
forms all other variants. Only in the 8-input scenario a variant,
CNLSr-G, is slightly better than CNLS+-G. Recall that, in this
scenario, CNLS is estimating an eight-dimensional function there-
Table 3
CNLS+-G outperforms the other methods for 100 observations in problems with 2–7
inputs.

# Of
inputs

Average running time (seconds)

CNLS CNLSr-O CNLSr-G CNLSr-A CNLS+-O CNLS+-G CNLS+-A

2 367.9 210.2 83.0 63.9 116.7 24.0 28.6
3 385.2 245.0 87.8 139.9 184.2 27.2 72.0
4 304.1 256.8 54.4 117.3 200.2 28.4 88.9
5 298.9 241.3 72.2 101.7 207.2 37.3 73.6
6 271.5 274.1 63.4 94.9 214.7 45.5 76.1
7 295.5 252.0 51.9 83.1 224.4 43.1 53.6
8 288.2 245.0 34.8 79.1 227.7 35.1 51.4
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fore, in the context of nonparametric regression and its curse of
dimensionality, 100 observations is, if at all, barely enough to ob-
tain meaningful results. Indeed, from Table 3, one can observe that,
for a fixed number of observations and as the number of inputs in-
crease, the performance of CNLSr-G improves with respect to the
performance of CNLS+-G. However, we consider that, for practical
purposes, this improvement is not relevant because, to obtain a
meaningful nonparametric regression curve, the number of obser-
vations should grow exponentially as the number of dimensions
increase (see Yatchew (1998), curse of dimensionality).

Table 10, found in the online appendix, is an extended version
of Table 3. From Table 10 one can observe the following interesting
phenomenon: For a fixed number of observations, as the number of
inputs increase, the number of relevant concavity constraints de-
creases slightly. Nevertheless, this reduction is minuscule so, for
practical purposes, we conclude that the dimensionality of the
problem has little impact on the number of hyperplanes required.

The third study assumed the same production function as the
second study. The observations and noise were also sampled from
the same distributions used in the second study. In this study the
number of inputs is varied from two to eight and the number of
observations is one of {25, 50, 100, 200, 300, 400, 500, 600, 700}.
Thus the third study consists of 63 scenarios and, as before, each
scenario was simulated 10 times to obtain the average perfor-
mance of each algorithm. Table 4 gives, for each scenario, the best
strategy in terms of average solution time. Note that CNLS and
CNLS+-A are the best strategies when the number of observations
is small (in fact, too small to be useful in practice) while CNLS+-G
and CNLSr-G are the best strategies when the number of observa-
tions is large (practical-sized problems). For high dimensional
models, when the number of observations ranges from 100 to
400, CNLSr-G dominates CNLS+-G. This is because CNLS+-G takes
more iterations to identify the violated concavity constraints then
CNLSr-G even though CNLS+-G uses fewer constraints on average.
Also note the CNLS+-G method average time to solve a 500 obser-
vation formulation is less than a 400 observation formulation. A
500 observation formulation adds more concavity constraints ini-
tially based on the distance criteria and uses fewer iterations to
reach optimal solution leading to a shorter run time. In general,
the CNLS+-G is suggested in large scale or high dimensionality
scenarios.

Reviewing the results in Tables 3 and 4, the run time for the
entire proposed algorithm variant is reported. Consider the exam-
ple with 300 observations, 2 inputs and solved using variant
or Convex Nonparametric Least Squares. European Journal of Operational
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Table 4
In most scenarios CNLS+-G is the best strategy to solve problem (1).

Obs. Performance Number of inputs

2 3 4 5 6 7 8

25 Best strategy CNLS CNLS CNLS CNLS CNLS CNLS CNLS
Avg. constr. 625 625 625 625 625 625 625
Avg. time (seconds) 0.4 0.5 0.5 0.5 0.5 0.4 0.5

50 Best strategy CNLS+-A CNLS+-A CNLS+-A CNLS+-A CNLS+-A CNLS+-A CNLS+-A
Avg. constr. 1303 1131 1187 1176 1163 1098 990
Avg. iter. 2.4 3.2 3.0 3.3 2.5 2.8 3.0
Avg. time (seconds) 2.6 3.0 3.4 3.7 2.9 3.1 3.0

100 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLSr-G
Avg. constr. 2111 1933 1813 1737 1731 1615 1464
Avg. iter. 20.7 21.1 23.3 28.2 32.8 31.5 35.7
Avg. time (seconds) 24.0 27.2 28.4 37.3 45.5 43.1 34.8

200 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLSr-G CNLSr-G CNLSr-G
Avg. constr. 4477 4506 4414 4268 5677 4995 4751
Avg. iter. 18.5 23.7 25.3 31.3 22.0 19.0 18.7
Avg. time (seconds) 47.2 94.8 137.5 200.6 135.1 86.4 70.4

300 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLSr-G CNLSr-G CNLSr-G CNLSr-G
Avg. constr. 6712 6743 7169 9793 10,725 10,276 8386
Avg. iter. 14.6 22.0 27.7 23.0 26.3 26.0 18.0
Avg. time (seconds) 93.4 276.1 476.0 536.6 611.2 505.9 171.9

400 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLSr-G CNLSr-G CNLSr-G
Avg. constr. 10,015 10,106 10,117 10,491 18,095 14,336 11,262
Avg. iter. 15.1 22.1 30.3 38.5 32.7 22.3 13.7
Avg. time (seconds) 224.8 456.5 1278 2034 2215.6 861.6 198.0

500 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G
Avg. constr. 11,232 11,692 12,153 12,689 12,078 11,186 11,639
Avg. iter. 5.0 6.6 9.0 10.3 8.7 7.3 7.0
Avg. time (seconds) 135.3 209.5 358.4 626.5 835.1 808.3 594.7

600 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G
Avg. constr. 14,699 15,022 15,339 15,454 15,669 14,948 14,231
Avg. iter. 3.7 4.7 6.0 6.0 6.4 5.1 3.6
Avg. time (seconds) 236.3 276.2 572.2 721.7 876.8 905.2 741.2

700 Best strategy CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G CNLS+-G
Avg. constr. 18,684 18,948 19,384 19,660 19,934 19,423 19,309
Avg. iter. 3.0 4.4 5.3 5.6 6.0 6.3 4.9
Avg. time (seconds) 580.5 715.8 832.3 1147 1700 2764 1952

Table 5
Within a 5 hours limit, CNLS+-G can solve problems with a larger number of
observations than CNLSr-G.

Proposed models Number of inputs

2 5 8

CNLSr-G 400 800 700
CNLS+-G 1300 800 1000

Table 6
Descriptive statistics.

All districts (N = 604) 2006–2007 2007–2008

Mean Std. dev. Mean Std. dev.

Performance score (Y) 95.64 6.05 95.82 6.31
Admin. expenditure per pupil (X1) 1196.10 264.23 1122.97 316.49
Building operation exp. per pupil (X2) 1906.37 429.91 1786.22 441.63
Instructional exp. per pupil (X3) 5400.14 868.57 5018.06 722.53
Pupil support exp. per pupil (X4) 972.46 312.48 897.02 256.89

Table 7
Running time (seconds) in educational data set.

Year CNLS CNLSr-O CNLSr-G CNLSr-A CNLS+-O CNLS+-G CNLS+-A

2006–2007 N/A 11,974 32 N/A 8521 150 N/A
2007–2008 N/A 7489 5333 N/A 8715 704 N/A

N/A: system out of memory.

Fig. 5. The frontier of input space by administration expenditure per pupil (X1),
instructional expenditure per pupil (X3), and pupil support expenditure per pupil
(X4) given fixed performance score and building operation expenditure per pupil on
average in 2006–2007.
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CNLSr-G, to investigate the run time of each step of the algorithm,
we find the initial solution, step 2, includes 600 constraints and
takes less than 1 second; steps 3.1 and 3.2 are also very fast, tak-
Please cite this article in press as: Lee, C.-Y., et al. A more efficient algorithm
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ing less than 1 second because they are simple calculations; and
step 3.3 presents a significant burden because the run time in-
creases with the number of constraints. The 1st iteration includ-
ing 900 constraints takes 1 second and the 80th iteration
including around 22,000 constraints takes 14 minutes. These com-
putational times are representative of the general results of our
for Convex Nonparametric Least Squares. European Journal of Operational
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Table 8
More than 26% of the relevant constraints are found in the sweet spot.

Year 2006–2007 2007–2008

Distance percentile 3rd 6th 9th 3rd 6th 9th

Benchmarks
Total number of CNLS constraints (A) 364,816 364,816 364,816 364,816 364,816 364,816
Number of relevant constraints (B) 2348 2348 2348 1731 1731 1731
Performance of the CNLS+-G Algorithm
CNLS+-G running time (sec.) 150 1277 2833 704 1322 5125
Number of Constraints
Total number of constraints in CNLS+-G, (C)=(D)+(E)+(F)+(G) 13,285 23,554 33,823 21,785 23,553 34,422
Number of linear regression constraintsa (D) 604 604 604 604 604 604
Number of ordering constraintsb 2 V (E) 603 603 603 603 603 603
Number of sweet spot constraintsc 2 V (F) 10,872 21,744 32,616 17,587 21,744 32,616
Number of VCd added, V (G) 1206 603 0 2991 602 599

Number of relevant constraints
Total number of relevant constraints found in CNLS+-G, (H)=(I)+(J)+(K)+(L)=(B) 2348 2348 2348 1731 1731 1731
Number of relevant constraints found in linear regression, (I) 604 604 604 604 604 604
Number of relevant constraints found in ordering constraints, (J) 10 10 10 7 7 7
Number of relevant constraints found in the sweet spot (K) 971 1407 1734 453 684 811
Number of relevant constraints found in the VC added (L) 763 327 0 667 436 309

Ratios assessing the effectiveness of the CNLS+-G Algorithm
Percentage of constraint reduction (1-C/A) (%) 96.4 93.5 90.7 94.0 93.5 90.6
Percentage of relevant constraints to CNLS constraints (B/A) (%) 0.64 0.64 0.64 0.47 0.47 0.47
Percentage of relevant constraints to CNLS+-G constraints (B/C) (%) 17.7 10.0 6.9 8.0 7.4 5.0
Percentage of sweet spot constraints that are relevant constraints (K/F) (%) 8.9 6.5 5.3 2.6 3.2 2.5
Percentage of relevant constraints in the sweet spot to all relevant constraints (K/H) (%) 41.4 60.0 73.9 26.2 39.5 46.9
Percentage of VC added that are relevant constraints (L/G) (%) 63.3 54.2 N/A 22.3 72.4 51.6

a These are shown in (1a).
b These are the second type of constraints shown in Eq. (4).
c These are all the second type of constraints shown in Eq. (3), excluding the ordering constraints.
d These are the third type of constraints shown in Eq. (3).
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experiments with alternative variants of the proposed algorithm
and varying the size of the problem instance in terms of observa-
tions and inputs.

The final simulation study aims to determine the limit on the
problem sizes (in terms of number of observations) that can be
solved within 5 hours with the CNLSr-G and CNLS+-G variants.
The results, presented in Table 5, indicate that CNLS+-G can solve
problems with a larger number of observations than CNLSr-G.

5. Empirical study

This section demonstrates the computational benefits of the
generic algorithm, and in particular the benefits of the CNLS+-G
variant. This variant was applied to an empirical study about State
of Ohio kindergarten through twelfth grade schools for the 2006–
2007 and the 2007–2008 school years. The dataset in this study
is thoroughly described in Johnson and Ruggiero (in press). There
are four classes of expenditures per pupil as inputs: administrative
(X1), building operation (X2), instructional (X3), and pupil support
(X4). The input price of each expenditure is deflated by an index
of first-year teacher salaries and is measured on a per student ba-
sis. The output is an index of student performance (Y) developed by
the State of Ohio. This index aggregates the measure of 30 state-
wide outcome goals including standardized tests in an overall
measure of performance. Descriptive statistics of 604 observations
are reported in Table 6.

Previously an analyst would have to use other production func-
tion estimation methods such as Data Envelopment Analysis
(DEA)13 or Stochastic Frontier Analysis (SFA) with their modeling
limitations, (Kuosmanen and Kortelainen, 2012), because a CNLS
model was computational infeasible. To illustrate the computational
benefits of the proposed methods, the running time of 2006–2007
and 2007–2008 with respect to proposed models are shown in Ta-
13 A variety of computational efficient algorithms exist for DEA; for a particular fast
example see Dulá (2011).
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ble 7. The standard CNLS formulation (problem 1) cannot be directly
solved due to out-of-memory errors. The CNLS+-G algorithm per-
forms well in both cases.

Fig. 5 shows the frontier of input space spanned by factors
administration expenditure per pupil (X1), instructional expendi-
ture per pupil (X3), and pupil support expenditure per pupil (X4) gi-
ven performance score and building operation expenditure per
pupil are fixed at their averages for the data 2006–2007. The figure
illustrates the substitutability among input factors.

Recall that in the sweet spot approach, used in CNLS+-G, the ini-
tial set of constraints, V, in RCNLS is built as follows: For each
observation i, include the concavity constraints corresponding to
the observations whose distance to observation h is less than a
pre-specified threshold value di (distance percentile parameter).
Also recall that the range between the zeroth percentile and the
dth

i percentile is defined as the Sweet Spot. Throughout the paper,
the threshold value in CNLS+-G is set to the 3rd percentile, because
this threshold was found to work well for our Monte Carlo simula-
tions. Here we investigate the effects of the distance percentile
parameter in the empirical study. For this purpose Table 8 shows
a sensitivity analysis using 3rd, 6th, and 9th percentile respectively
on the data for both periods. We make the following observations:

1. Typically a higher percentile will result in a longer running time
because more constraints are added initially.

2. CNLS+-G reduced the number of constraints by more than 90%
using any percentile.

3. The percentage of relevant constraints included in the CNLS for-
mulation is low, 0.47–0.64%, in contrast, the percentage of rel-
evant constraints included in CNLS+-G is relatively high, 5.0–
17.7%. That is, the ratio of relevant constraints to all the con-
straints included throughout the execution of the algorithm is
10–30 times greater in CNLS+-G than in CNLS.

4. The percentage of sweet spot constraints that are relevant con-
straints increases as the percentile used to define the sweet spot
increases. When the 9th percentile is used, more than 46.9% of
or Convex Nonparametric Least Squares. European Journal of Operational
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all the relevant constraints needed are found within the sweet
spot, thus the method for defining the sweet spot is effective
at identifying relevant constraints. However, as the percentile
increases, the ratio of sweet spot constraints to relevant con-
straints decreases; thus we get an effect of diminishing returns.

5. Our strategy for selecting violated constraints is reasonable effi-
cient as 22.3–72.4% of added violated constraints (VC) are rele-
vant constraints.

6. The results of our Monte Carlo simulation validate our proposal
of using the 3rd percentile because of the significant benefits in
terms of running time. This in part can be attributed to the
higher percentage of CNLS+-G constraints that are relevant con-
straints (17.7% and 8.0%).

6. Conclusion

This study proposes a generic algorithm to reduce the time to
solve the CNLS problem. This algorithm is necessary because current
methods are very slow in the case of small sample sizes (100–300
observations) and, in our experience intractable for large sample
sizes (>300). The underlying principles of this strategy are: (1) using
a distance analysis to determine a set of initial constraints that are
likely to be satisfied at equality in the optimal solution and (2) effec-
tively identifying violated constraints which are iteratively added to
the model. A particular variant of the generic algorithm, the CNLS+-G
variant, was determined to be the best algorithm by an extensive
simulation study. CNLS+-G was successfully applied to a real-life
empirical study for which estimating CNLS was previously impossi-
ble using CPLEX and reasonable computational power. The distance
analysis allows 25–75% of the relevant constraints to be identified
initially. Although CNLS+-G requires solving multiple quadratic pro-
gramming problems, the largest instance that needs to be solved is
at least 90% smaller in terms of the number of constraints required
compared to the original CNLS formulation.

The generic algorithm to solve the CNLS problem is based on the
strategy of Dantzig et al. (1954, 1959) to solve large scale problems
by iteratively identifying and adding violated constraints. Most
studies that apply Dantzig et al.’s strategy consider NP-hard prob-
lems. In contrast, we demonstrate that Dantzig et al.’s strategy is
also valuable to solve problems that are theoretically tractable
(i.e., in P), but that in practice were previously not solvable due
to their large scale.

Appendix A. Supplementary material

Supplementary material associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.ejor.2012.11.054.
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