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Abstract Nondiscretionary environmental inputs are critical in explaining relative effi-
ciency differences and productivity changes in public sector applications. For example,
the literature on education production shows that school districts perform better when stu-
dent poverty is lower. In this paper, we extend the nonparametric approach to decompose
the Malmquist Productivity Index suggested by Färe et al. (American Economic Rewiew
84:66–83, 1994) into efficiency, technological and environmental changes. The approach is
applied to analyze educational production of Ohio school districts. Applying the extended
approach in an analysis of the educational production of 604 school districts in Ohio, we
find changes in environmental harshness are the primary drivers in productivity changes of
underperforming school districts, while technical progress drives the performance of top
performing school districts.

Keywords Data envelopment analysis · Nondiscretionary inputs · Productivity

1 Introduction

Beginning with the Coleman Report (1966), a substantial body of literature has examined
the importance of socio-economic variables in the production of education. Hanushek (1979,
1986) discussed the importance of parental and student characteristics in determining de-
sirable school outcomes. A useful framework for analyzing local public production is the
Bradford et al. (1969) model where exogenous factors influence the transformation of gov-
ernment activities into desirable service outcomes. In education, for example, most students
in an adverse environment will not be able to achieve the same outcomes as students in a
more favorable learning environment, Connell (1994). This insight has important implica-
tions for the measurement of efficiency; see Ruggiero (1996).
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In this paper we investigate educational productivity and efficiency via nonparametric
methods. The nonparametric literature on performance evaluation has an important starting
point in the pioneering work of Farrell (1957), who developed a piecewise linear approxi-
mation to input isoquants and a decomposition of overall inefficiency into technical and al-
locative parts. His assumption of constant returns to scale (CRS) was later relaxed by Farrell
and Fieldhouse (1962), who suggested a linear programming model. The extension to mul-
tiple outputs was suggested by Boles (1971) and popularized and named Data Envelopment
Analysis (DEA) by Charnes et al. (1978). Färe and Lovell (1978) introduced the non-radial
Russell measure that overcame excess slack inherent in the Farrell-based models.1

Literature on refining the DEA model includes Afriat (1972) and later Banker et al.
(1984), who extended the approach to allow efficiency evaluation relative to a variable re-
turns to scale frontier, and Banker and Morey (1986) and Ruggiero (1996), who allowed
nondiscretionary inputs using a single-stage DEA model. Nonparametric methods have also
been developed to measure productivity by analyzing performance in multiple time periods.
Nishimizu and Page (1982) proposed the first decomposition of total factor productivity
change, and Färe et al. (1992, 1994) developed the nonparametric estimation of the factors
of productivity change by integrating Shephard’s input distance function and the Malmquist
Productivity Index (MPI) proposed by Cave et al. (1982). The index, a geometric mean of
two distance functions, can be decomposed into a measure of change in efficiency and a
measure of change in technology.

Extending this concept, several researchers developed further decompositions of produc-
tivity change. Ray and Desli (1997) proposed an alternative decomposition of the MPI in
which technical change is measured relative to a variable returns-to-scale frontier. Sueyoshi
and Aoki (2001) used a window analysis approach in which multiple time periods are ag-
gregated into a “window” and technical change is measured via the MPI decomposition
between periods. The size of the window is selected to reduce the effect of sampling on
estimates of technical change. Lovell (2003) developed the decomposition of productivity
change to more accurately capture scale effects, while also advocating a simultaneously
oriented model.

Alternative methods have also been proposed for identifying the reference set in panel
data. Tulkens and Vanden Eeckaut (1995) described three types of models to analyze panel
data: contemporaneous, sequential and pooled. Contemporaneous models analyze each pe-
riod individually as in the MPI originally proposed by Fare et al., but tend to attribute ran-
dom sampling differences to technical change, and thus overestimate the effect of technical
change. Sequential models include observations in prior periods in the reference set for mea-
suring efficiency, which implies that technology can only progress and that technical regress
is not possible. Pooled models aggregate data from all periods and analyze them in a single
cross-section analysis which makes it impossible to measure technical change.

The MPI has been applied to investigate changes in productivity in industries such as:
healthcare Rouse and Swales (2006); pharmacies Althin et al. (1996); retailing Vaz et al.
(2010); banking Grifell-Tatjé and Lovell (1997); and education Ouellette and Vierstraete
(2010). Each industry requires slightly different modeling approaches.

We consider public sector production that is characterized by nondiscretionary inputs.
Building on Banker and Morey (1986) and Ruggiero (1996) in the education sector, we
decompose overall productivity as a change in efficiency, technology and environmental

1Førsund and Sarafoglou (2005) provide an interesting and useful discussion of the history of DEA in the
economics and operations research literature.
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conditions. We then apply the decomposition to analyze the educational production of 604
school districts in Ohio, ranging from well-endowed to impoverished.

The remainder of this paper is organized as follows. In the next section, we introduce the
efficiency measures based on distance functions for environments with and without nondis-
cretionary inputs. Section 3 presents the standard productivity decomposition and extends it
to the public sector. In Sect. 4, we illustrate our decomposition with an application to Ohio
school districts. Section 5 discusses our findings, conclusions, and future research directions.

2 Production technology and output-oriented efficiency measurement

2.1 Technology representation without nondiscretionary inputs

We first consider a production technology at time t where N decision-making units (DMUs)
utilize a vector Xt = (xt

1, . . . , x
t
M) of M inputs to produce a vector Y t = (yt

1, . . . , y
t
S) of

S outputs.2 Observed inputs and outputs for DMUn are Xt
n = (xt

n1, . . . , x
t
nM), and Y t

n =
(yt

n1, . . . , y
t
nS), respectively. We use the following convention throughout this paper: Y t

i ≥
Y t

j iff yt
is ≥ yt

js∀s and yt
is > yt

js for some s = 1, . . . , S. We represent production with the
following empirical production possibility set (PPS) at time t :

T t =
{

(Y t ,Xt ) :
N∑

n=1

λny
t
ns ≥ yt

s , s = 1, . . . , S;

N∑
n=1

λnx
t
nm ≤ xt

m, m = 1, . . . ,M;

λn ≥ 0, n = 1, . . . ,N

}
.

(1)

We illustrate the empirical PPS in Fig. 1, where we assume one input xt is used to produce
one output yt . The empirical PPS provides the boundary that allows us to measure technical
efficiency. To do so, we introduce the following definition3:

Definition 1 Dt(Y t
j ,X

t
j ) = (max{θ : (θY t

j ,X
t
j ) ∈ T t })−1 is the output-oriented measure of

efficiency for (Xt
j , Y

t
j ) ∈ T t assuming CRS.

From Fig. 1, we see Dt(yt
A, xt

A) = a/b. Note that a smaller value of Dt(yt
A, xt

A) indicates
more inefficiency. Using the same amount of input, observe that DMU B produces more
output than DMU A.

2.2 Technology representation with nondiscretionary inputs

We now extend the technology to allow nondiscretionary inputs. Suppose that each of the N

DMUs described above faces an index z that captures the influence of non-discretionary in-

2We assume the inputs and outputs in the production function are stable over time. For an alternative concept
see Chen and Johnson (2010).
3We present output-oriented efficiency using Shephard’s distance function.
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Fig. 1 Production technology

puts.4 At time t , DMUn uses discretionary inputs Xt
n, non-discretionary input zt

n and outputs
Y t

n , respectively. We represent production with the following empirical PPS with existing
technology at time t :

T t
z =

{
(Y t ,Xt , zt ) :

N∑
n=1

λny
t
ns ≥ yt

s , s = 1, . . . , S;

N∑
n=1

λnx
t
nm ≤ xt

m, m = 1, . . . ,M;

λn = 0 if zt
n > zt , n = 1, . . . ,N;

λn ≥ 0, n = 1, . . . ,N

}
.

(2)

The technology in (2) is characterized by CRS with respect to the discretionary inputs and by
a monotonic relationship between the nondiscretionary input and output,5 ceteris paribus.

Banker and Morey (1986) showed that Dt(Y t
j ,X

t
j ) produces a biased measure because it

is composed of both efficiency as well as the effect on output by the non-discretionary vari-
able. The output-oriented measure of efficiency consistent with a technology characterized
by non-discretionary inputs is:

Definition 2 Dt(Y t
j ,X

t
j , z

t
j ) = (max{θ : (θY t

j ,X
t
j , z

t
j ) ∈ T t

zt
j

})−1 is the output-oriented mea-

sure of efficiency for (Xt
j , Y

t
j , z

t
j ) ∈ T t

zt
j

.

Figure 2 illustrates the measurement of efficiency with technology characterized by (2). We
assume that zt

B > zt
A,indicating that DMU B has a more favorable environment. As Fig. 2

shows, DMU B is technically efficient while DMU A is technically inefficient. Follow-

4The selection of an overall index to reflect environmental influence is for expositional convenience only. In
the case of multiple nondiscretionary inputs, Ruggiero (1998) and Estelle et al. (2010) provide alternative
two-stage models to aggregate all nondiscretionary inputs in a single index.
5Banker and Morey (1986) impose convexity with respect to the non-discretionary variables, but (2) does
not. For a more general model, see Johnson and Kuosmanen (2009).
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Fig. 2 Production technology
with nondiscretionary inputs

ing Ruggiero (2000), we define the environmental harshness associated with the nondiscre-
tionary input using the ratio of the distance functions above:

Definition 3 Et(Y t
j ,X

t
j , z

t
j ) = Dt(Y t

j ,X
t
j )/D

t(Y t
j ,X

t
j , z

t
j ) ≤ 1 is a measure of environmen-

tal harshness.

Returning to Fig. 2, we observe Dt(yt
A, xt

A) = a
b

and Dt(yt
A, xt

A, zt
A) = a

a∗ , resulting in
Et(yt

A, xt
A, zt
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ba

= a∗
b

. Whereas the distance function from a point to the frontier pro-
vides a measure of inefficiency, Et(Y t

j ,X
t
j , z

t
j ) measures the distance between frontiers due

to the environment; thus, a smaller value of Et(Y t
j ,X

t
j , z

t
j ) indicates a worse environment.

From the definition:

Dt(Y t
j ,X

t
j ) = Et(Y t

j ,X
t
j , z

t
j ) ∗ Dt(Y t

j ,X
t
j , z

t
j ), (3)

which shows that the distance to the overall frontier is a product of environmental harsh-
ness and efficiency; the distance from this best practice frontier increases if the production
environment worsens and/or inefficiency increases.6 We use this relationship to decompose
productivity for public sector applications in the following section.

3 Measuring environmental productivity7

To measure productivity, we need to evaluate production plans in two different time pe-
riods. Therefore, we denote Dt+1(Y t

j ,X
t
j ) = (max{θ : (θY t

j ,X
t
j ) ∈ T t+1})−1 as the dis-

tance function of DMU j in time t to the referent technology observed in time t + 1 and
Dt(Y t+1

j ,Xt+1
j ) = (max{θ : (θY t+1

j ,Xt+1
j ) ∈ T t })−1 as the distance function of DMU j in

time period t + 1 to the referent technology observed in time period t . Färe et al. (1994)

6For ease of discussion, we refer to the frontier defined by technology (1) as the overall best practice frontier.
We note that in a public sector application, this is equivalent to the frontier defined in (2) for units with the
most favorable environment.
7While this paper focuses on the public sector and uses education as an example, we use the more general
term, “environmental productivity”, to recognize the existence of nondiscretionary factors of production in
the private sector.



202 Ann Oper Res (2014) 221:197–210

Fig. 3 Productivity growth

proposed an output-oriented MPI at period t relative to period t + 1 as

MPI(Y t+1
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. (4)

This measure can be decomposed as:
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j ,Xt+1
j )

Dt(Y t
j ,X

t
j )

[
Dt(Y t+1

j ,Xt+1
j )

Dt+1(Y t+1
j ,Xt+1
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t
j )
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2

(5)

where the first term measures the change in efficiency from period t to period t + 1 and the
bracketed term measures the shift in technology.

Figure 3 illustrates the four distance function estimates we use to construct MPI for
DMU A. In the absence of nondiscretionary inputs, we observe technology at time t and
t + 1. The distances to the period t frontier and the period t + 1 frontiers are measured
for both observed production levels. Consider first the change in efficiency. We estimate
the efficiency of A in time t + 1 as Dt+1(Y t+1

j ,Xt+1
j ) = d/f . This is an improvement in

efficiency from time t where efficiency was estimated as Dt(Y t
j ,X

t
j ) = a/b. As a result,

we observe
Dt+1(Y t+1

j
,Xt+1

j
)

Dt (Y t
j
,Xt

j
)

> 1, indicating an improvement in efficiency for DMU A across

time.
Next, we consider the measure of technical change as represented by the bracketed term.

We calculate the distance of the data point (yt+1
A , xt+1

A ) observed in time t + 1 to the period
t frontier as Dt(yt+1

A , xt+1
A ) = d/c. Likewise, measuring the distance of the data point in

time t + 1 to the t + 1 technology results in Dt+1(yt+1
A , xt+1

A ) = d/f . Hence, our measure of

productivity using t +1 data is
Dt (Y t+1

j
,Xt+1

j
)

Dt+1(Y t+1
j

,Xt+1
j

)
= f/c > 1, i.e., technical progress is observed.

Using the data point in time t results in
Dt (Y t

j
,Xt

j
)

Dt+1(Y t
j
,Xt

j
)
= e/b > 1. To avoid arbitrarily choosing

a particular time period in the calculations, the measures are averaged using the geometric
mean.

The use of a CRS frontier by Färe et al. (1994) has been criticized in the literature by
Ray and Desli (1997) and Lovell (2003). However, the proposed alternatives present other
distinct problems, notably, Ray and Desli (1997) can lead to infeasible solutions and the
mixed period terms that are ambiguous and difficult to interpret (Färe et al. 1997). Further
as Kuosmanen and Sipiläinen (2009) address, the technical change component of the MPI
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characterizes the impact on total factor productivity (TFP) and not technical change. Pro-
ductivity is only improved by shifts in CRS frontier, changes in variable returns to scale
(VRS) efficiency cannot be distinguished from improvements in scale efficiency. Thus it is
unclear and debatable whether the use of a VRS model can actually distinguish between
technical change and scale efficiency components. For this reason we discuss our approach
in terms of the CRS frontier.

The productivity measures (4) and (5) are derived for the case where production is not in-
fluenced by nondiscretionary factors. To develop an Environmental Malmquist Productivity
Index (EMPI), we first note from (3) that

Dt(Y t
j ,X

t
j ) = Dt(Y t

j ,X
t
j , z

t
j )E

t (Y t
j ,X

t
j , z
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Dt+1(Y t
j ,X

t
j ) = Dt+1(Y t

j ,X
t
j , z

t
j )E

t+1(Y t
j ,X

t
j , z

t
j ), and

Dt(Y t+1
j ,Xt+1

j ) = Dt(Y t+1
j ,Xt+1

j , zt+1
j )Et (Y t+1

j ,Xt+1
j , zt+1

j ).

(7)

Substituting (6) and (7) into (5) and rearranging, we find:
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Equation (8) shows that the EMPI can be decomposed into:

efficiency change
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.

The technical change terms in (8) use the geometric mean to calculate frontier shifts similar
to the standard MPI. Alternative decompositions including scale proposed by Ray and Desli
(1997) and Lovell (2003) can also be extended in an analogous manner to the Färe et al.
(1994) MPI.
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Fig. 4 Public sector productivity

The EMPI is illustrated in Fig. 4, where we observe production possibility A in times t

and t + 1. For convenience, the dashed lines represent the production frontier that is depen-
dent on the non-discretionary inputs, the solid lines represent best practice frontiers under
the most favorable environmental conditions, and bold letters indicate output levels in time
t +1. Technical progress is shown because the production possibility set is larger in time pe-
riod t + 1. Note that production possibility A is technically efficient in time t but inefficient
in t + 1. The EMPI for A is given by:

EMPI = (g/h)

1

(h/i)

(a/b)

[
h

e

c

a

] 1
2
[

(e/f )

(h/i)

(a/b)

(c/d)

] 1
2

.

Efficiency change is given by (g/h)

1 , where the denominator indicates that A is efficient in
time t but is only (g/h)100 percent efficient in time t +1. Since the efficiency change is less
than unity, we observe a decline in A’s efficiency. The change in environmental harshness
is measured by (h/i)

(a/b)
> 1;8 the numerator (denominator) measures the loss in output due to

a relatively harsh environment in time t + 1(t). Hence, this ratio provides a measure of the
change in the proximity of an efficient production frontier (accounting for the environmental
conditions) to the best-practice frontier from one time period to the next. As illustrated
in Fig. 4, the adverse effect of the nondiscretionary input for production possibility A is
reduced from t to t + 1 because h is relatively closer to i than a is to b. Importantly, the
change in environmental harshness evaluates each production possibility in each time period
without holding discretionary inputs fixed.

A measure of technical progress is given by [ h
e

c
a
] 1

2 > 1; the first ratio measures the pro-
ductivity using the observation in time t + 1. In this case, output expansion is possible from
e to h due to technical progress, while controlling for the environment. Using the observa-
tion in time t to measure productivity, we also find technical progress with an expansion
from a to c, holding the environment constant. Finally, environmental technical change is
given by [ (e/f )

(h/i)

(a/b)

(c/d)
] 1

2 < 1, suggesting a reduction in the adverse effect of the environment.
Using the data point in time t + 1, we observe that environmental harshness is worse in time

8Note the change in harshness is greater than 1 in this example, but generally this does not have to be true.
Similar statements hold for technical progress and environmental technical change described in the following
paragraph.
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t (e is farther from f ) than in time t + 1 (h is closer to i). Hence, (e/f )

(h/i)
< 1 indicates that,

technologically, the environmental effect on production is mitigated across time. Likewise,
we observe the same tendency using the data point in time t as (a/b)

(c/d)
< 1. For both technical

change measures, we use the geometric mean.

4 Analysis of educational production

We empirically illustrate the productivity concepts defined above with an application to
education. We consider State of Ohio kindergarten through twelfth grade school district per-
formance for school years 2006 (t ) and 2007 (t + 1). In Ohio, numerous indicators of per-
formance, including results on standardized tests, are assessed at various levels and school
district performance is measured by an aggregate measure.

We select four classes of expenditures per pupil as inputs: administrative, instructional,
building operation, and pupil support. Given that expenditures are also determined not only
by input quantities but also by input prices, we deflate the expenditures by an index of first-
year teacher salaries.9 After controlling for input prices, the resulting deflated expenditures
represent inputs. We also consider the percent of students in poverty as a nondiscretionary
input.10 For output, we use an index of student performance developed by the State of Ohio,
which aggregates the measure of 30 statewide outcome goals including standardized tests
in an overall measure of performance. This measure is highly correlated with individual
outcomes. For an alternative model of education production see Thanassoulis and Portela
(2002). The inputs are measured on a per student basis which would typically imply a CRS
assumption. Since the output variable is an index of student performance, we assume that
all schools should be able to achieve a similar level of performance in terms of the output
index regardless of the number of students in each school. Our assumption is supported by
the wide distribution of sizes of high schools identified as top performers via their test scores
by U.S. News and World Report 2009. Descriptive statistics are reported in Table 1.

The State of Ohio classifies school districts based on the number of standards met. The
designations from school year 2007–2008 include Academic Watch, Continuous Improve-
ment, Effective, Excellent, and Excellent with Distinction.11 Means and standard deviations
of the districts for each designation are reported in Table 1. The performance scores (output)
decrease in the designation of the school. Note that the Academic Watch group comprises
only 1.5% of the observed schools and thus has significantly larger standard deviations than
the other designated groups. We observe that on average all groups except Continuous Im-
provement experience a decrease in the average resources available. We find that, due to the
multiple input nature of the data and nondiscretionary poverty input, it is difficult to draw
conclusions about the appropriateness of the designated groups, and if lack of resources or
an abundance of poverty drives the lower performance scores.

We use DEA and the EMPI decomposition described above to investigate the sources
of changes in productivity. The results are reported in Table 2. We find that the average
efficiency for all groups is similar in 2006 and 2007, ranging between 0.80 and 0.85. With
the exception of the districts designated as Excellent with Distinction and Academic Watch,

9We use beginning teacher salaries from school year 2004–2005.
10For the DEA models, we use (100-poverty rate) as the nondiscretionary factor, to be consistent with our
theoretical model. Hence, an increase in the non-poverty rate leads to higher outcomes, ceteris paribus.
11No school districts were designated Academic Emergency, the lowest designation. Our analysis was devel-
oped independently of this classification.
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Table 1 Descriptive statistics

All districts (N = 604) 2006–2007 2007–2008

Mean Std. Dev. Mean Std. Dev.

Performance Score 95.64 6.05 95.82 6.31

Admin Expenditure per Pupil 1,196.10 264.23 1,122.97 316.49

Building Operation Exp. per Pupil 1,906.37 429.91 1,786.22 441.63

Instructional Exp. per Pupil 5,400.14 868.57 5,018.06 722.53

Pupil Support Exp. per Pupil 972.46 312.48 897.02 256.89

Poverty Rate 3.05 3.49 3.04 3.35

Academic Watch (N = 9)

Performance Score 76.10 3.53 74.91 3.12

Admin. Exp. per Pupil 1,651.41 395.07 1,473.59 342.41

Building Operation Exp. per Pupil 2,662.63 736.46 2,393.78 700.54

Instructional Exp. per Pupil 7,047.09 669.01 6,227.22 734.53

Pupil Support Exp. per Pupil 1,236.15 274.85 1,105.39 320.11

Poverty Rate 15.62 6.07 14.36 5.39

Continuous Improvement (N = 82)

Performance Score 87.86 4.34 87.31 3.98

Admin Exp. per Pupil 1,265.88 304.98 1,308.34 425.07

Building Operation Exp. per Pupil 2,009.53 409.61 2,065.74 626.64

Instructional Exp. per Pupil 5,330.47 828.94 5,736.66 649.67

Pupil Support Exp. per Pupil 939.66 306.06 1,014.06 216.90

Poverty Rate 6.78 4.19 6.80 4.08

Effective (N = 287)

Performance Score 94.97 3.32 94.94 3.05

Admin Exp. per Pupil 1,179.37 223.34 1,119.02 235.29

Building Operation Exp. per Pupil 1,854.47 364.67 1,775.21 391.89

Instructional Exp. per Pupil 5,205.97 694.82 4,955.10 701.20

Pupil Support Exp. per Pupil 924.02 265.63 871.96 229.41

Poverty Rate 2.71 2.56 2.73 2.48

Excellent (N = 152)

Performance Score 98.66 4.30 99.48 4.27

Admin Exp. per Pupil 1,179.31 290.42 1,108.52 384.82

Building Operation Exp. per Pupil 1,875.75 505.99 1,731.39 391.26

Instructional Exp. per Pupil 5,343.05 945.19 4,958.56 697.61

Pupil Support Exp. per Pupil 976.37 385.33 901.38 326.93

Poverty Rate 2.02 1.98 2.01 1.89

Excellent with Distinction (N = 152)

Performance Score 103.01 2.79 103.70 2.69

Admin Exp. per Pupil 1,115.69 196.39 966.99 166.17

Building Operation Exp. per Pupil 1,901.94 344.75 1,620.20 258.91

Instructional Exp. per Pupil 5,697.29 987.27 4,891.15 722.96

Pupil Support Exp. per Pupil 1,074.10 283.79 912.65 210.41

Poverty Rate 0.83 0.79 0.85 0.75

All calculations by authors
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Table 2 Average efficiency and productivity results by classification

Designation Efficiency EMPI Decomposition

t t + 1 Change in Env. Technical change

Eff. Harshness Env. Standard

Academic Watch 0.80 0.80 1.12 1.02 0.96 1.12 1.05

Continuous Improvement 0.81 0.82 1.07 1.02 0.91 1.11 1.05

Effective 0.84 0.80 1.06 0.96 0.96 1.04 1.11

Excellent 0.85 0.83 1.09 0.98 0.97 1.02 1.12

Excellent with Distinction 0.83 0.85 1.17 1.03 0.98 1.04 1.15

Grand 0.83 0.82 1.09 0.98 0.96 1.04 1.11

Output-oriented models are used. The EMPI and its decomposition follow (8). All calculations by authors

we observe similar average increases in the EMPI measure. Interestingly, the Excellent with
Distinction districts are considered among the best performing and the Academic Watch
districts are among the worst performing in the state. The Excellent with Distinction districts
show a relatively large average increase in the EMPI of 17 percent and the Academic Watch
districts show an average increase of 12 percent.

The decomposition of the EMPI, however, reveals different sources of the increased pro-
ductivity. On average, we find a modest increase for the two groups of about 2 to 3 percent
in efficiency and a slight decrease in the proximity to the best practice frontier. Hence, on
average, these districts are able to compensate for a slightly more adverse environment with
slight improvements in efficiency. The main difference between the groups is the role of
technical change and environmental technical change. The Excellent with Distinctions dis-
tricts show a 15 percent increase in output due to technical change. Likewise, they benefit
from a relatively low worsening of environmental technical change. The Academic Watch
districts, on the other hand, show the lowest improvement in technical progress, but a larger
adverse effect of environmental technical change, on average.

Table 2 also reports other interesting results. For example, only the Effective and Ex-
cellent districts experience a decrease in average efficiency. Both the Academic Watch and
Continuous Improvement districts realize technical progress, although at a smaller rate than
the other districts. Of note, these two districts also show higher increases in environmental
technical change, indicating that their operating environments grow relatively harsher.

The results of our approach indicate that the increase in environmental harshness due to
the poverty rate largely explain the growth in public school productivity. These results sup-
port Hanushek (1986) and others who argue that environmental factors impact drive school
performance more significantly than resource allocation. While we find there are technolog-
ical advances in education, not all districts are able to realize these gains because of their
environments. Our findings indicate that the average district realizes improved productivity
despite a slight decline in technical efficiency. However, the decomposition approach also
reveals that the average district realizes an increase in environmental harshness.

Table 3 provides illustrative results for a four representative districts: Cleveland, Toledo,
Steubenville, and Oakwood. Other than suburban Oakwood, the other districts encounter
high levels of poverty. Toledo, and especially Cleveland, are large city districts that face
many of the problems found in the inner city. Of the three high-poverty districts, only Cleve-
land is classified by Ohio as an Academic Watch district (meeting only 2 of the 30 estab-
lished standards) with among the worst outcome levels. Considering enrollment, Cleveland
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Table 3 Comparison of four districts

Variable School district

Cleveland Toledo Steubenville Oakwood

Academic
watch

Continuous
improvement

Effective Excellent with
Distinction

2007–2008 Classification

Poverty Rate

2006–2007 19.69 17.77 18.85 0.05

2007–2008 17.36 17.87 19.19 0.05

Outcome

2006–2007 76.2 79.1 94.8 108.1

2007–2008 72.1 80.1 97.1 107.8

Results

EMPI 1.19 1.29 1.00 1.33

� Efficiency 0.85 1.24 0.98 1.12

� Env. Harshness 1.19 0.93 0.88 1.00

Technical Change 1.06 1.01 0.96 1.18

Env. Technical Change 1.11 1.10 1.17 1.00

All calculations by authors

has over 50,000 students and is second to Columbus. In contrast, Toledo has 27,200 stu-
dents with a similar poverty rate and Steubenville has about 2,200 students. Yet even with
high levels of poverty, Steubenville still produces high outcomes (meeting 24 of the 30 stan-
dards). As the districts improve within the classification, we observe higher outcomes in
both years, with Oakwood meeting all standards and achieving aggregate outcomes in the
99th percentile. With the exception of Steubenville, the other three districts have a high
value of EMPI: Toledo (1.29), Oakwood (1.33) at about the 95th percent rank, and Cleve-
land (1.19). Decomposition provides insight into these values. Toledo and Oakwood both
see improvements in efficiency, Steubenville becomes slightly less efficient, and Cleveland
relatively more efficient. Cleveland’s decrease in the poverty level leads to an improved
operating environment in t + 1; however, possible gains are not realized due to increased
inefficiency. Only Steubenville experiences technical regress, but the increase in poverty
causes an increase in environmental harshness and environmental technical regress. Oak-
wood, on the other hand, maintains a very favorable environment with low poverty rates,
technical progress, and an improvement in efficiency.

5 Conclusions

In this paper we extended the nonparametric measure of productivity to the public sector
where nondiscretionary factors are important contributors to output. We introduced an En-
vironmental Malmquist Productivity Index useful for public sector (and private sector) ap-
plications and decomposed it into efficiency change, environmental harshness change, and
technical change. Technical change was further decomposed into changes in the effect that
nondiscretionary variables have on production and technical change that occurs independent
of environment. The new model was applied to analyze the educational production of 605
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Ohio school districts in 2006 and 2007. Our results showed that the decomposition of pro-
ductivity to account for environment provides information useful in analyzing performance.

Based on our findings, we suggest that future research should be undertaken to identify
if these results persist across longer panel data sets and are applicable to other states. The
index can easily and inexpensively be used to advise policy-makers of the true drivers of
variations in performance within the public sector.
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