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a b s t r a c t

Bucket brigade is a linear order-picking process with one loading station and one unloading station. Here
we model and quantify picker blocking in bucket brigade order picking systems (OPSs). A bucket brigade
improves throughput and reduces variability in OPSs. However, each order picking trip fills different
orders and creates workload variation per order. We show that bucket brigade order picking experiences
picker blocking when there is a workload imbalance per pick face. We derive a closed-form solution to
quantify the level of blocking for two extreme walk speed cases. Additional simulation comparisons
validate the picker blocking model which includes backward walk and hand-off delays. We identify the
relationship between picker blocking in bucket brigade OPSs and picker blocking in a circular-aisle
abstraction of OPSs in which backward walk and hand-off delays as well as forward walk speed are
considered. Our analytical model and simulations show that aggregating orders into batches smoothes
the workload variation by pooling the randomness of picks in each order and that slowest-to-fastest
picker sequencing modulates picker blocking between two pickers, i.e., the interaction between
neighboring pickers.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Distribution centers (DC) receive products from suppliers and
fulfill orders for customers. Order picking refers to the process of
retrieving items from storage locations to fulfill customer orders.
Tompkins et al. (2003) report that OPSs on average consume 55
percent of a retailer DC's operational cost. This cost will likely be
higher for an OPS under pressure to absorb demand variability
from market fluctuation (Hong et al., 2012b) and to resolve skill
discrepancy from frequent workforce changes (Bartholdi and
Eisenstein, 1996a). A bucket brigade strategy is useful for order
picking both in warehouses and many types of manufacturing
processes. Its characteristics of high throughput and a self-
organizing property allow workforces to be organized with a
minimal level of managerial planning and oversight. In this paper,
we refer to the combination of flow-rack shelving (Fig. 1(a)) and
the bucket brigade strategy discussed in Bartholdi and Eisenstein
(1996a) as a bucket brigade order picking system (OPS). We define
the bucket brigade OPS as a linear order-picking process with one
loading station and one unloading station (Fig. 1(b)). Pickers travel

through an aisle to retrieve items from shelves and place them in a
bin (or tote) on a conveyor.

The picking area is divided into “zones” in which a picker picks
a batch (or order). However, unlike other types of zone picking, the
boundaries between the zones are continuously updated to main-
tain high utilization of the pickers and to minimize the work in
process (WIP). The picker in the first zone, the most upstream
picker, picks an item and places it in the tote assigned to a
particular batch (Fig. 2(a)). Then the upstream picker moves to
the next pick face to continue processing the batch (Fig. 2(b)) by
picking at subsequent pick faces until meeting a downstream
picker who has no assigned tote. At this point, the upstream picker
hands off the current tote and returns to the loading station, or
meets another upstream picker. If this individual is not the most
upstream picker, after handing off the tote, the upstream picker
moves backwards to meet a picker further upstream (Fig. 2(c) and
(d)). Upon finally meeting an upstream picker, the now-
downstream picker takes over the upstream picker's tote and
walks forward until either meeting another downstream picker
without a tote, or reaching the unloading station (Fig. 2(b) and
(d)). The last downstream picker releases the completed batch to
the unloading station and moves backward to take over a new tote
(Fig. 2(c)). This so-called dynamic pick-and-pass process elimi-
nates the need for workload balancing and minimizes WIP
(Bartholdi and Eisenstein, 1996a).
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In a bucket brigade OPS, randomness and the imbalanced
workload between pickers cause picker blocking. For example,
an upstream picker in Fig. 2(b) attempts to move forward to the
next pick face, which can be occupied by a busy downstream
picker (Fig. 3(a)). In this example, picker blocking occurs when the
upstream picker cannot hand off the current batch to the down-
stream picker, because the downstream picker is currently picking,
and the upstream picker cannot pass the downstream picker,
because the pickers' sequence must be maintained. In addition,
pickers stand idle when the hand-off process is synchronized
improperly. If an upstream picker in Fig. 2(d) is picking when a
downstream picker encounters the upstream picker (Fig. 3(b)), the
downstream picker must wait until the upstream picker completes
the pick and hand-off delay occurs.

Blocking delays and the resulting hand-off delays occur
(Bartholdi and Eisenstein, 1996a), when pick requirements are
random over pick locations. Picker blocking in bucket brigade
order picking has received little attention in the literature, with a
few notable exceptions (Armbruster and Gel, 2006; Armbruster
et al., 2007; Bartholdi and Eisenstein, 1996b, 2005; Bartholdi et al.,
2001); however, this research has focused on operational rules or
conditions that lead to reasonable overall operational performance
in diverse settings. A clearly defined analytical model for upstream
blocking delays is needed and we provide one such model in
this paper.

We develop a model for picker blocking with unique character-
istics specific to bucket brigade order picking by measuring and
tracking the distance between order pickers. Further, we analyti-
cally investigate two extreme conditions of very-fast and very-

slow forward walking speeds and discuss simulation studies to
identify picker blocking patterns for typical forward and backward
walk speeds including hand-off delays. Our simulation study also
analyzes how picker blocking in a bucket brigade OPS occurs due
to variations in the hand-off times between pickers, backward
work speed, batch picking, and workforce staffing. Finally, the
simulations compare bucket brigade and a circular-aisle OPSs
abstraction in terms of picker blocking and the impacts on work-
load balance.

The remainder of this paper is organized as follows. Section 2
reviews the relevant literature and describes the picker blocking
issues. Section 3 analyzes picker blocking in bucket brigade order
picking. Section 4 introduces analytical models for picker blocking.
Section 5 details the picker blocking via simulation studies. Section 6
concludes.

Unloading station

Loading station

pick faces

Tote, 
picked
items

conveyor

Fig. 1. A flow-rack OPS: (a) physical layout; and (b) top view.

Unloading station

Loading station

Fig. 2. A series of bucket brigade order picking operations: (a) an upstream picker takes a tote from a loading station and a downstream picker travels forward while picking;
(b) both pickers travel forward and pick items; (c) a downstream picker unloads a tote and travels backward; and (d) a downstream picker takes over a tote and an upstream
picker hands off a tote.
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Fig. 3. Delay situations in bucket brigade order picking: (a) picker blocking; and
(b) hand-off delay.
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2. Literature review

2.1. Bucket brigades

Bartholdi and Eisenstein (1996b) introduce the bucket brigade
workforce management method based on three assumptions:
workers travel with instantaneous walk speed, each worker's
capability is distinctive, and workload is uniformly and randomly
distributed. The highest throughput is obtained when pickers are
sequenced with the slowest worker in the location most upstream
and the fastest worker in the location most downstream. Further,
Bartholdi and Eisenstein (1996b) show that blocking delay is
minimized when large capability differences exist among pickers.
Bartholdi and Eisenstein (1996a) suggest that cooperation
between neighboring workers can also reduce blocking delay via
smoother hand-offs. Bartholdi et al. (2001) relax the assumption
that the workload is uniform over the pick area and conclude that
bucket brigades are still advantageous and self-balancing.

In a manufacturing example, Bartholdi and Eisenstein (2005)
analyze an assembly line with a finite walk speed and a lengthy
return trip after handing off a workload. Under these assumptions,
they find a considerable loss of productivity due to walk-back time
and hand-off delay. Armbruster et al. (2007) consider a situation
where pickers learn and improve workspeed; in their alternative
model, resequencing to maintain slowest-to-fastest ordering
improves performance. Koo (2009) shows that picker blocking
and hand-off delay reduce bucket brigade OPS productivity when
pickers have identical capabilities. To improve productivity, each
picker's picking area is constrained by defining a downstream
boundary where upstream pickers are allowed to leave totes if a
downstream picker is not available. While this approach decreases
delay, it increases WIP.

2.2. Picker blocking in narrow-aisle order picking

Our research builds on previous analysis of picker blocking in
narrow-aisle OPSs. For example, Skufca (2005) presents a k-picker
congestion model of a no-passing system in the case of infinite
walk speed. Gue et al. (2006) address two-picker congestion
models of a parallel-aisle pick area approximated by a circular
no-passing system considering unit and infinite walk speeds. In
the unit walk speed case, the unit walk time to pass a pick face is
identical to the unit pick time. Gue et al. (2006) also conduct
simulation experiments to investigate picker behavior under more
practical walk speed assumptions, by identifying the effects of pick
density on narrow-aisle order picking performance under the
single-pick assumption where a picker has at most one pick at a
pick face. They conclude that a batch picking strategy in narrow-
aisle OPSs is advantageous when the pick density is either very
low or very high. Parikh and Meller (2010) and Hong et al. (2013)

show that the variation in pick density can be as important as the
level of pick density in determining the amount of blocking in a
circular-aisle OPS abstraction. Hong et al. (2012b) confirm that
batching strategies can reduce picker blocking regardless of the
pick density.

Hong et al. (2012a) develop a narrow-aisle indexed batching
model (IBM) that generates batches to control picker blocking in
an OPS with multiple narrow-aisles where passing in an aisle is
not possible. A batch index represents the batches' release
sequence; the model assigns orders to indexed batches and
determines the retrieval routes for each batch.

2.3. Issues

Many studies of the differences in blocking and throughout for
bucket brigade OPSs do not quantify picker blocking or explain the
effects of bucket brigade strategies on picker blocking. The work
most closely related to our paper, Koo (2009), investigates perfor-
mance via simulation and suggests changing the bucket brigade
strategy. Thus, we are motivated to analytically understand and
model picker blocking within a bucket brigade OPS, to describe the
interaction between pickers at different pick locations, and to
explore the effects of bucket brigade strategies.

3. Picker blocking mechanism

We begin by discussing a model of picker blocking which uses a
circular-aisle abstraction and explaining the typical release
mechanism of a new batch. Then we show the equivalence under
specific situations of the picker blocking models between a bucket
brigade OPS and a circular-aisle abstraction.

3.1. Picker blocking in a circular-aisle abstraction

A circular-aisle abstraction is useful to understand picker
blocking phenomena (Gue et al., 2006; Hong et al., 2013; Parikh
and Meller, 2010; Skufca, 2005). Fig. 4 shows a circular-aisle
abstraction of a warehouse composed of linked n pick faces
(n42) where pickers travel in a clockwise direction. A stochastic
model determines the number of picks at a pick face. Pickers
continue to pick at the same pick face with probability p. They
spend unit time to conduct one pick. When no pick is chosen
(1�p), they move to the next pick face with time m, i.e., the walk
speed between two pick faces is 1/m. After a pick, the picker's
probability of walking is independent of his/her previous action.
Thus the probability of v picks at a particular pick face is pv.
Blocking occurs under a no-passing restriction. If the downstream
picker is picking, the upstream picker cannot pass and thus
remains idle. When the blocking picker completes the picking
operation and a blocking situation is released, each picker moves
to his/her next pick column simultaneously.

The productivity loss by picker blocking is characterized by the
ratio of time spent to pick to time spent at a stop. This ratio can be
less than one if picker blocking occurs. Gue et al. (2006) introduce
a throughput model for an order picking system with k pickers
when one pick at most is made at a stop. To reflect a batch picking
situation, we generalize their model as Eq. (1). When each picker
is blocked b(k) fraction of the time, 0rb(k)r1, the throughput is

λ kð Þ ¼ kU
E½p�tp

E½p�tpþtw

� �
1�b kð Þð Þ ð1Þ

where E[p] represents the expected number of picks at a stop.
Time to pick (tp) includes the time spent picking an item and time
to walk (tw) represents the average time to walk past a pick face
(location).

1n

p

1-p

Fig. 4. A typical no-passing circular passage system: a circular-aisle warehouse.
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3.2. Throughput of a bucket brigade OPS under picker blocking and
hand-off delays

Similar to the circular-abstraction, we express the productivity
loss by picker blocking in a bucket brigade OPS as the ratio of time
spent to pick to time spent at a stop. Using the throughput model of
Gue et al. (2006) for an order picking system with k pickers in a
single-pick situation, we generalize their model as Eq. (2). When
each picker is idle, h(k) represents the time per pick face due to
hand-off delays, 0rh(k)rmax[p], and max[p] represents the
maximum number of picks at a stop; the throughput is

λ kð Þ ¼ kU
E½p�tp

E½p�tpþtfwþtbwþh kð Þ

� �
1�b kð Þð Þ ð2Þ

where time to walk (tfw) represents the average time to forward
walk past a pick face (location) and time to walk (tbw) represents
the average time to backward walk past a pick face (location).

3.3. Picker blocking in bucket brigade order picking

Assume that there is no hand-off delay and that backward walk
speed (empty travel walking speed) is instantaneous, similar to
Bartholdi and Eisenstein (1996a). In addition, assume that k
pickers have identical pick performance and walk speed. Interest-
ingly, with infinite backward walk speed and no hand-off delays,
the circular-aisle abstraction picking system can be used to
characterize a bucket brigade OPS in terms of picker blocking.
Further, the same picker blocking model can be used for both
analyses.

The equivalence is easily shown by replacing “pickers” in the
circular-aisle abstraction with “batches” in the bucket brigade OPS.
Recall that in bucket brigade order picking, picker blocking occurs
when an upstream batch cannot proceed because a downstream
batch has a pick at the pick face where the next item in the
upstream batch is located (or a location between the upstream
batch's current location and the next pick location) and the
upstream batch is prevented from moving forward. When the
upstream batch stays at the current pick face, a hand-off delay
occurs. A rigorous proof follows.

Theorem 1. When the backward walk time is instantaneous and the
hand-off time is zero, the picker blocking model of bucket brigade
order picking is equivalent to the picker blocking model of the
circular-aisle abstraction.

Proof. When the batch most downstream is completed, it dis-
appears from the system, other batches in the system are handed
off to the next pickers, and a new batch is released. The comple-
tion, backward walks, and hand-offs occur instantaneously and
result in the release of a new batch. This proof shows that: 1) the
order picking mechanisms in the bucket brigades and the circular-
aisle abstractions are equivalent until a batch is completed; and 2)
the completion of a batch does not impact any locations and times
of current batches.

1) Before completion of the batch most downstream
Without loss of generality, before completion of a batch, the
two models follow the same procedure. For example, Fig. 5
(a) shows batches i, iþ1, iþ2, and iþ3 in a circular-aisle
abstraction, and Fig. 5(b) shows a bucket brigade order picking
situation. The unidirectional travel in the bucket brigade is
analogous to the clockwise travel in the circular abstraction.
Thus, until batch i (bi) is completed, the two systems face the
same situations of picker blocking.

2) Completion of the batch most downstream and occurrence of
hand-off

Since batch i has been completed, the chain reaction discussed
in Fig. 6 arises. Due to the infinite backward walk speed and the
zero hand-off delay, all batches will be handed off at the same
time. Batch iþk enters the system (i.e., the first pick face) and
its release time is identical to the completion time of batch i.
The picker assignments of batches iþ1, iþ2, …, iþk�1 are
changed from 2,3,…,k to 1,…,k�1. Picker k captures batch iþk.
During this shift, there is no blocking. Then, recursively, case 1)
above repeats. In the circular-aisle abstraction, the release
location of a new batch is the first pick face and the release
time of a new batch is the completion time of the kth previous
batch. Thus, the two systems release a new batch to the same
location at the same time when the backward walk speed is
infinite and the hand-off delay is negligible (see Fig. 6).

From arguments 1 and 2, the two systems are identical in
steady state. While the initialization and finalization stages are
beyond the scope of this paper, technically, the two models can
begin with the same procedure if both models start together from
the loading station, and both models can end if they do not allow
any hand-off after the last batch enters the system.

End of proof.
The literature reports similar results, although the equivalence

between the circular-aisle abstraction and bucket brigade picker
blocking models has not been identified previously. For example,
Gue et al. (2006) and Bartholdi and Eisenstein (1996b) find that

18

8

1
bi+3
bi+2
bi+1

bi

bi

bi+1

bi+2

bi+3

Fig. 5. In both models, four pickers process four batches. Two pickers (pickers
3 and 4) may have a chance of blocking depending on items in batches iþ2 and
iþ3 (the number of pick faces¼8, the number of pickers¼4): (a) a circular-aisle
abstraction; and (b) a bucket brigade OPS.

18

8

1

bi+3

bi+2
bi+1

bi+4bi+4

bi+1

bi+2

bi+3

Fig. 6. A completion and release example. Both models release batch iþ4 at the
same time starting from pick face 1 (the number of pick faces¼8, the number of
pickers¼4): (a) a circular-aisle abstraction; and (b) a bucket brigade OPS.
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batch picking results in less picker blocking and more productivity.
While the relationship between the two models of order picking is
clear, we believe that a rigorous definition of the relationship
between the two models provides the basis for the main results
described in the following sections.

4. Analytical models

This section investigates the functional relationship between
workload (i.e., pick density) and picker blocking in a two-picker
bucket brigade OPS. We quantify picker blocking for extreme walk
speed assumptions using closed-form expressions and extend the
results to more realistic walk speeds through simulations. We first
analyze picker blocking under the assumption of infinite walk
speed, a popular assumption in the literature (Bartholdi and
Eisenstein, 1996a).

4.1. Problem definition

We introduce an abstracted bucket brigade model with two
pickers (Fig. 7). The bucket brigade OPS consists of n pick faces.
The order pickers take a no-passing traversal route, meaning that
they travel through the OPS and pick in the forward trip. Upon
meeting a downstream picker, they wait until the downstream
picker hands off the loaded tote, and then a hand-off occurs and
the upstream picker takes the backwards trip. The downstream
picker arriving at the last pick face moves backward until meeting
an upstream picker. We assume that at a pick face, the pickers pick
with a probability p. The probability of walking past a pick face is
q¼1�p, and the states are picking, walking, or standing idle due
to blocking. Pick time is constant regardless of pick face character-
istics such as shelf height. The pick time of one sku regardless of
quantity, pt, the forward walk time between two pick faces, ft, and
the backward walk time between two pick faces, bt, are all
deterministic. The loading and unloading times are independent
of the picker blocking or other operational issues and thus we treat
them as zero.

Dt denotes the distance between two pickers at time t. The
distance dADt ranges from 0 to n, where 0 and n represent a
downstream picker blocking an upstream picker. Measuring Dt

follows the distance definition in Fig. 8. The physical layout of the
distance between two pickers is shown in Fig. 8(a). After the
pickers begin to pick, the distance between them is defined as
Ddown
t ¼(downstream picker position�upstream picker position).

Until the downstream picker reaches position n, this measurement
is valid, but when the downstream picker arrives at position n and
starts to move upstream, the distance is defined as Dup

t ¼n�
(downstream picker position�upstream picker position). The calcu-
lation of the Dt value switches between Ddown

t and Dup
t whenever

the downstream picker unloads a tote at an unloading station or
hands off.

When the downstream picker unloads at position n at time
t�1, a hand-off occurs at time t (Fig. 8(a)), since, instantaneously,
the downstream picker unloads the tote at the unloading station
and walks backward to the upstream picker. Because the down-
stream picker is now idle, the upstream picker yields the current
tote and moves to position 1 to take a new tote from the loading
station. The new positions of the two pickers at time t are shown
in Fig. 8(b). In this case, we measure the distance between the two
pickers as n�(downstream picker position�upstream picker posi-
tion). Restated, if the distance at time t�1 is r, the distance at time
t is n�(n�(rþ1))¼rþ1.

Note how our distance definition smoothly connects two
neighboring distance states without changing the probability of
picker blocking between the two pickers. Another way to express
the distance definition is that when the downstream picker takes
odd-numbered totes (1, 3, 5, …), the distance becomes (down-
stream picker position�upstream picker position), and when the
downstream picker takes even-numbered totes (2, 4, 6, …), the
distance becomes n�(downstream picker position�upstream picker
position).

We derive the percentage of time blocked, denoted as bpt:ft:
bt(n), where pt:ft:bt represents the pick:forward walk:backward
walk time ratio as a performance measure and n represents the
number of pick faces in the system. We identify analytical models
over two restrictive cases: 1) forward walk speed is equal to unit
pick time per pick face and backward walk speed is infinite (pt:ft:
bt¼1:1:0); and 2) forward and backward walk speeds are infinite
(pt:ft:bt¼1:0:0). We assume that the pick time is proportional to
the number of picks.

4.2. Extremely slow forward walks and instantaneous backward
walks (pt:ft:bt¼1:1:0)

We utilize a Markov property for determining distances
between two pickers consistent with Hong et al. (2013). A Markov
chain is introduced by defining state St¼0 (block in the down-
stream picker's odd-numbered trip), state St¼n (block in the
downstream picker's even-numbered trip), and states [1, 2, …,
n�1] given by St¼Dt according to the distance definition dis-
cussed above (see Fig. 8). All states can be summarized by the
vector [0, 1, 2, …, n�1, n]. We distinguish four transition cases and
show that the current state St is determined by St�1 and that a
Markov property is valid.

a) Transition probabilities between unblocked states
If both pickers pick (pnp) or walk (qnq), the current distance

n

1

ft bt

p
1-p

p

pt

Fig. 7. Abstracted model.

n

1

d

n

1

d

Fig. 8. Two distance measurements: (a) the downstream picker takes an odd-
numbered tote; and (b) the downstream picker takes an even-numbered tote.
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(Dt) does not change at tþ1. If a hand-off occurs, the current
distance is the same according to the assumption of Dt regard-
less of each picker's position. However, when picker 1 (who is a
downstream picker when the downstream picker picks an odd-
numbered batch and an upstream picker when the down-
stream picker picks an even-numbered batch) picks while
picker 2 walks (pnq), the distance decreases by 1. When picker
1 walks while picker 2 picks (qnp), the distance increases by 1.

b) Transition probabilities from an unblocked state to a
blocked state
When the distance between picker 1 and picker 2 is 1, a
blocked state can arise if picker 1 picks (with probability p),
and picker 2 walks (with probability q). Vice versa, when the
distance between picker 1 and picker 2 is n�1, the current
state becomes a blocked state if picker 1 walks (with prob-
ability q) and picker 2 picks (with probability p).
When the distance is n�1 and picker 1 is located at pick face n,
if picker 1 walks to the unloading station and picker 2 is located
at pick face 1, the occurring hand-off leads to picker blocking
(Fig. 9(a)). Then, according to Dt, the downstream picker (picker
2) occupies pick face 1, the upstream picker (picker 1) is
blocked at the loading station, and the same probability
relationship holds. Because it is a blocking status, the distance
is n. Similarly, when the distance is 1 and picker 1 is located at
pick face 1, if picker 1 stays at pick face 1 and picker 2 walks at
pick face n, the occurring hand-off leads to picker blocking
(Fig. 9(b)).

c) Transition probabilities from a blocked state to an
unblocked state
If picker 2 blocks picker 1, picker 1 must wait for picker 2 to
walk (with probability q) to exit a blocked state and vice versa.
When the two pickers are located at pick faces n�1 and n, the
forward move at pick face n leads to a transition to an
unblocked state.

d) Transition probabilities between blocked states
When the current state is blocked, a pick can occur with
probability p. The blocking status remains, i.e., a blocked state
transits to a blocked state with probability p, but hand-off
delays do not affect these states.

When multiple-picks are allowed, a Markov property of dis-
tance holds over pick probability p. Fig. 10 depicts the transition
diagram characterizing the state space and transition probabilities.
This diagram is the same as the diagram in Hong et al. (2013),

which was derived for the parallel aisle OPS. Note that the
proposed discrete-time Markov chain of picker blocking for
multiple-picks with a pick:forward walk:backward walk
times¼1:1:0 is not conditioned on the pickers' hand-off operation.

The stationary probabilities for the Markov chain model are the
same as Hong et al. (2013). The blocking probability per picker in a
blocked state is

b1:1:0 nð Þ ¼ p
2pþn�1

ð3Þ

Here, only the upstream picker experiences picker blocking and
the blocking probability of the upstream picker is equal to 2p/
(2pþn�1). We validate the analytical model in Eq. (3) via a
comparison with simulation models for four different layouts
(n¼10, 20, 50, and 100). The relative error gap between the
analytical models and the four simulation results shows, on
average, 0.52%, with a minimum gap of 0.00% and a maximum
gap of 5.6% (see Appendix A).

4.3. Instantaneous forward/backward walks (pt:ft:bt¼1:0:0)

We now show how the current distance shortens or lengthens
for the 1:0:0 model of a bucket brigade OPS. All states are
summarized by the vector [0, 1, 2, …, n�1, n], which derives from
the previous unit-walk time model. Assume that random variables
X1
t and X2

t represent the number of pick faces passed in time t by
picker 1 and picker 2, respectively. Yt¼Diff (X1

t , X
2
t ) represents the

difference in walks between the two pickers. The probability
density function of Yt, g(y) (see Hong et al. (2013) for detail) is

g yð Þ ¼ P Yt ¼ yð Þ ¼ p2q�y 1
1�qð Þ 1þqð Þ ¼

pq yj j
1þq

for�1oyo1:

ð4Þ
If we assume that the distance at the previous state is Dt�1¼r,

the actual change in distance will be bounded by the physical
blocking phenomenon and the value r, which gives two transition
cases:

a) Transition probabilities to unblocked states
In this case, the distribution function (4) is used directly. Thus,
the change, given r, is from 1 to n�1:

P Yt ¼ yð Þ ¼ g yð Þ ¼ pq yj j
1þq

for �1�royon�1�r; r¼ 0; :::;n

n

1

n-1

n

1
n

n

1

1 n

10

Fig. 9. Picker blocking at the last pick face when: (a) the downstream picker takes an odd-numbered tote; and (b) the downstream picker takes an even-numbered tote.
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Note that r is 0 or n when a picker is blocked. Denote L1t�1, L
2
t�1

the location of picker 1 and picker 2 at t�1. The locations of two
pickers at t are L1t�1þX1

t and L2t�1þX2
t .

i) Odd-numbered tote
When there is no hand-off between t�1 and t, the change in
distance (d) equals [L1t�1þX1

t �(L2t�1þX2
t )]�r¼[rþy]�r¼y.

If a hand-off occurs, the change in distance (d) equals [n�
((L2t�1þX2

t )�(L1t�1þX1
t �n))]�r¼[n�(�r�yþn)]�r¼y.

ii) Even-numbered tote
When there is no hand-off between t�1 and t, the change in
distance (d) equals n�[(L2t�1þX2

t )�(L1t�1þX1
t )]�r¼[rþy]�

r¼y. If a hand-off occurs, the change in distance (d) equals
[L1t�1þX1

t �(L2t�1þX2
t )]�r¼[rþy]�r¼y.

b) Transition probabilities to blocked states
The next step calculates the probability of blocking events by
summing all cases of blocking (1 or n�1). We note that
blocking will occur at state 0 if Ytr�r. g(y) is symmetric. The
probability of blocking is calculated as

P YtZrð Þ ¼
X1
y ¼ r

pq yj j
1þq

¼ p
1þq

qr
1

1�q
¼ qr

1þq

P YtZn�rð Þ ¼ qn� r

1þq

We also need to check the transition to blocked states after a
hand-off. Because the blocked states do not change the downstream
picker's position, there is one hand-off at most and the probability
function still holds. The two situations appear in the transition
diagrams in Fig. 11. This model is identical to the probability model
of the circular-aisle abstraction described in Hong et al. (2013) (see
Hong et al. (2013) for details of the calculation).

The blocking probability per picker in one of the blocked states is

b1:0:0 2ð Þ ¼ 1
2þ n�1ð Þp ð5Þ

Consistently, the blocking probability of the upstream picker is
equal to 2/(2þ(n�1)p) and the error gap between the analytical
models and the four simulation results is, on average, 0.19%, with a
minimum gap of 0.00% and a maximum gap of 1.22% (see
Appendix A).

The analytical models are identical to the models of the
circular-aisle abstraction OPS with two pickers. Still, several
questions remain. First, realistic forward walk time between pick
faces is not instantaneous, or one unit of time, as assumed in the
analytical model. In addition, unlike the circular-aisle order pick-
ing model, bucket brigade order picking involves hand-off delays
as well as blocking delays and backward walking time. Both hand-
off delay and backward walk impact picker blocking.

5. Simulation models

This section describes the simulation models used to evaluate
the operation of bucket-brigade OPSs under specific range of
operating conditions. We show that the analytical models bound
the feasible range of walk speeds by considering a very slow walk
speed and hand-off delays. Additionally, we measure the impacts
of backward walk speed on picker blocking and limited number of
picks per stop. Finally, we include simulations with five pickers
and variably skilled pickers under the assumption of limited
number of picks per trip. For each simulation, we consider pick
density value on the range of 0.01–0.99 with the interval¼0.01
with 20 runs per instance.

5.1. Non-extreme forward walk speed and instantaneous backward
walks (impacts of hand-off delay)

We examine a common forward walk speed in bucket brigade
order picking. Note that the backward walk speed is still infinite,
or at least much greater than the forward walk speed (Bartholdi
and Eisenstein, 1996a). The resulting hand-off delay as a function
of pick density is shown in Fig. 12. Comparing a bucket brigade
system with a circular-aisle abstraction for the same pick to
forward walk time ratios shows that less picker blocking in the
bucket brigade system than in the circular-aisle abstraction due to
the hand-off delay. Simply stated, part of the delay that would be
attributed to blocking in the circular-aisle abstraction is now
attributed to the hand-off delays in the bucket brigade system.

Recall that when forward walk speed is not infinite or is not
unit walk speed, a hand-off delay occurs and the starting time of a

block 1

p2+q2

q

p

pq

n-1 block

q
p

pq

2

pq

pq p2+q2 p2+q2

Fig. 10. State space and transitions for the Markov chain model when pickers take extremely slow forward walks and instantaneous backward walks (pt:ft:bt¼1:1:0).
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1/(1+q)
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Fig. 11. State spaces and transitions for the Markov chain model when the forward and backward travel times are infinite: (a) unblocked case; and (b) blocked case.
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new batch is delayed. A hand-off delay occurs as two pickers
become asynchronous. Fundamentally, the infinite walk speed
model causes pickers to confront each other in unit pick time. As
long as two pickers begin at the same unit time, they are
synchronized in a unit interval time. In the unit walk speed case,
a similar situation is expected. However, in general, the walk speed
may be between infinite and unit walk speed in an order picking
scenario (Gue et al., 2006). In this case, the timing of confrontation
of the two pickers can be asynchronous and cause a hand-off
delay. Thus, picker blocking probability decreases. The example in
Fig. 13 illustrates a hand-off delay of picker 1 when picker
2 processes the second item of batch 2 (B2

2, where the superscript
represents the batch number and the subscript represents the
items in the batch). Picker 1 has completed the last two picks of
batch 1 (B1

5 and B1
6) and unloaded the collected batch, and is idle at

the pick face next to picker 2. The idle time duration is Y1
(¼A2�S1) when picker 1 arrives at time S1 and picker 2 processes
the second item of batch 2 (B2

2) at time A2.
Next, assume that hand-off delays can occur and that backward

walk speed (empty travel walk speed) is still instantaneous.
Denote E[HO] as the expected hand-off time per trip; by assump-
tion, bt is 0. Denote the time blocked probability in the n-pick face
circular aisle as Bpt:ft(n). The picker blocking in the n-pick face
bucket brigade OPS can be approximated as:

Corollary 1. When the backward walk time is instantaneous
bpt:f t:0 nð Þ � Bpt:f tþE HO½ �=n nð Þ

Proof. Each trip has one hand-off delay when there are two
pickers. The hand-off delay impacts the downstream picker's trip

and the unproductive time impacts the walk time. When the
expected hand-off delay, E[HO], is positive the trip lengthens by E
[HO]. Thus, the average walk time between two pick faces becomes
ftþE[HO]/n.

End of proof.
Fig. 14 compares bpt:ft:0(n) to Bpt:ftþE[HO]/n(n), where Fig. 14

(a) represents the picker blocking (bpt:ft:0(n)) and Fig. 14
(b) represents the circular-aisle simulation (Bpt:ftþE[HO]/n(n)). Here,
Corollary 1 is almost true when the walk speed is slow, but as it
becomes faster, the error gap, on average, is 0.66%, with a
maximum gap of 14.69% and a minimum gap of 0.00%. Corollary
1 also explains the trade-offs between hand-off and blocking delay
in bucket brigades. Even though one might expect the hand-off
delay to worsen the blocking delay, we find the productivity loss
due to hand-off delay is partially compensated by the productivity
gain by reducing blocking delay because a blocking model is
equivalent to a blocking model with a slower walk speed.

5.2. Finite backward walk speed

Now consider when a picker in a bucket brigade order picking
returns to pick a new batch from the preceding picker or from the
loading station. Assume that the picker's return walk speed is
finite. Fig. 15 analyzes the impacts by hand-off delays and back-
ward walk speed over the workload., i.e., backward walk speed has
significant impacts when the workload is low and the impacts
lessen as the workload increases.

Corollary 10. In general, the picker blocking in the n-pick face
bucket brigade OPS is

bpt:f t:bt nð Þ � Bpt:f tþbtþE HO½ �=n nð Þ

Proof. Extending Corollary 1, each trip walks n pick faces back-
ward. If a picker moves forward one pick face, later the picker
must move back to the pick face with backward walk time bt. Thus,
the expected walk time between two pick faces becomes ftþbtþE
[HO]/n.

End of proof.
Fig. 16 shows the results of simulating Corollary 10. Note that

the values overestimate delays when the pick density is lower and
underestimate when the pick density is high. The error gap, on
average, is 2.64%, with a maximum gap of 30.93% and a minimum
gap of 0.00%. In general, a low pick density leads to a relative long
time interval with no blocking, whereas in a high pick density
case, the backward walk skews pickers' walk speeds and more
picker blocking occurs.

The backward walk impacts the blocking delay. Intuitively,
moving backward reduces the distance between the upstream
and downstream pickers. A faster backward moving speed would
reduce the time to blocking. Given the forward walk speed, the
earlier blocking inevitably increases blocking chances and results
in more delay. Corollary 10 explains that the circular-aisle abstrac-
tion blocking model, which has no backward moving, is equivalent
to the bucket brigade blocking model when the forward walk
speed of the circular-aisle abstraction blocking model is slower
than the forward walk speed of the bucket brigade blocking
model. Therefore, the adjusted circular-aisle abstraction blocking
model experiences less blocking delay due to the slower
walk speed.

5.3. A limited number of picks and more pickers

The picker blocking estimates from Section 4 assume a poten-
tially unlimited number of picks at a particular pick face and two
pickers in the OPS. In this section we relax the two assumptions
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via simulation modeling to investigate the performance of our
model under violations of these assumptions. The probability of v
picks at a particular pick face is pv. When p is large, the number of
picks at a particular pick face can be large. We present simulation
results with five pickers in the OPS limiting the maximum number
of picks at a pick face (m)¼2, 5, 10, 20, 50, and 100. We find the
average error gap is 2.07%, with a maximum gap of 30.17% and a
minimum gap of 0.44% between the simulation results and our
analytical model. Therefore, in cases of a limited number of picks
and more pickers, the result in Corollary 10 holds, i.e., the
augmented circular-aisle abstraction model experiences a similar
amount of productivity loss due to blocking delay. We note that
even though larger batch sizes improve operational throughput,
each batch requires a longer cycle time to reach completion, i.e.,
order picking slows down. Depending on the urgency of the lead
time, warehouse managers will need to set the size of batches
appropriately (Fig. 17).

5.4. Batch picking with different capability

In general, bucket brigade OPSs are applied to dynamic order
picking situations having a relatively small number of orders
available in an order picking time window. We use an order
picking profile based on Bartholdi and Eisenstein (1996a) and
Koo (2009) to investigate three scenarios (Table 1). The base case is
an order picking operation with 100 pick faces and five pickers. A
picker performs with pick:forward walk:backward walk times in
the ratio 1.0:0.1:0.05. The standard scenario assigns five
identically-skilled pickers and uses the walk speed and picking
capability configurations defined in Table 1. The slowest-to-fastest
ordering scenario differentiates picking capabilities across pickers;
the time per pick for the five pickers is 1.2, 1.1, 1.0, 0.9, and 0.8,
where an average picker still performs one pick per unit time. In
the fastest-to-slowest ordering scenario, the time per pick for the
five pickers is 0.5, 0.75, 1.0, 1.25, and 1.5. We evaluate the three
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scenarios by varying the average batch sizes among 10, 20, 30, 40,
50, and 100 items. We randomly select the size of each batch
based on a uniform distribution [min, max]¼[mean/2, meann3/2].
To reflect the randomness of pick times, we draw the value from a
triangular distribution of [min, mode, max]¼[0.5, 1.0, 1.5]. The
scenarios assume deterministic forward and backward walk times.
As a performance measure, we compare Pick time (%) – the
percentage of time spent picking compared to overall operations
– to Time blocked (%) – the productivity loss by picker blocking.
The five operations are picking, forward walking, backward walk-
ing, hand-off delay, and blocking delay.

Tables 2 and 3 illustrate the time blocked percentage and the
pick time percentage over the batch size variation when pt:ft:
bt¼1:0.1:0.05 and the variations of walk time when the batch size
is 20. In the bucket brigade OPS, STF experiences less picker
blocking than FTS. Since the hand-off difference between STF
and FTS is not significant, STF always dominates FTS as measured
by throughput, i.e., the percentage of pick time. Recall that picker
blocking in a bucket brigade OPS is due to the no-passing protocol
and occurs between two neighboring pickers. As the neighboring
pickers are assigned in a slow-to-fast order, the downstream
picker always completes his/her work more quickly if the work-
loads of both pickers are evenly distributed. We conclude that
bucket brigade OPS has an operational advantage over the varia-
tion of picker skills compared to circular-aisle abstraction OPSs.
However, it requires an appropriate assignment of pickers.

The bucket brigade operational strategy balances workload
between pickers (Bartholdi and Eisenstein, 1996b). The self-
balancing and self-organizing characteristics result in stable zone
assignment per picker (Bartholdi and Eisenstein, 1996a). Fig. 18
illustrates the variation of zone size per picker under different
scenarios. We find that whenworkers have similar capabilities, the
zone sizes are similar, and that zones of the most upstream and
most downstream pickers are only slightly larger than the zones of
the other pickers. The most upstream picker does not need to wait
to take over a new batch from a loading station, i.e., the most
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Fig. 17. Percentage of time blocked (five-picker, 100 pick faces) with finite backward walk speed: (a) bucket brigade OPS; and (b) circular-aisle OPS with Corollary 10

compensation.

Table 1
Summary of experimental picking environments.

Configuration Values

Scenarios Standard (STD), slowest-to-fastest ordering (STF), fastest-to-slowest ordering (FTS)
Mean of order sizes 10, 20, 30, 40, 50, and 100
Number of items per order Uniform distribution [min, max]¼[mean/2, meann3/2]
Pick time Triangular distribution [min, mode, max]¼[0.5, 1.0, 1.5]
Forward walk time 0.025, 0.05, 0.1, 0.25, 0.5
Backward walk time 0.00125, 0.025, 0.05, 0.125, 0.25
Performance measure Pick time percentage (%) and Time blocked percentage (%)
Runs per instance 20 runs with 2000 batches

Table 2
Comparison results over batch-size variations with pt:ft:bt¼1:0.1:0.05.

Batch
size

Scenarios

Bucket brigade OPS Circular-aisle OPS with
Corollary 10 compensation

Pick time % Time blocked % Pick time
%

Time blocked
%

STD STF FTS STD STF FTS STD STD

10 36.70 36.02 33.03 5.81 2.87 14.56 36.82 5.50
20 51.11 50.99 44.06 8.27 3.73 20.30 51.21 8.10
30 58.97 59.69 49.64 9.56 4.12 23.32 59.04 9.44
40 64.02 65.44 53.18 10.19 4.30 24.94 64.06 10.14
50 67.46 69.62 55.32 10.73 4.36 26.43 67.49 10.69

100 75.60 80.12 60.22 12.02 4.48 29.75 75.56 12.07

Table 3
Comparison results over walk time variations when the batch size is 20.

Walk time
ratio

Scenarios

Bucket brigade OPS Circular-aisle OPS with
Corollary 10

compensation

Pick time % Time blocked % Pick
time %

Time
blocked %

STD STF FTS STD STF FTS STD STD

0.025:0.0125 68.48 70.56 56.98 14.20 7.69 28.90 68.76 13.84
0.05:0.025 61.65 62.59 51.95 11.72 5.90 25.42 61.86 11.43
0.1:0.05 51.11 50.99 44.06 8.27 3.73 20.30 51.21 8.10
0.2:0.1 37.63 37.02 33.60 4.70 1.78 14.18 37.68 4.59
0.5:0.25 20.56 20.11 19.34 1.66 0.41 7.64 20.59 1.51
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upstream picker extends the operational zone and has time to pick
more items. Similarly, the most downstream picker has no down-
stream picker and is free from picker blocking. Thus, the most
downstream picker takes advantage of extending the operational
zone and has time to pick more items. The comparison of STF and
FTS shows that skilled pickers under the STF scenario, i.e., pickers
who can retrieve items more quickly, have larger zones than
skilled pickers under the FTS scenario.

There are additional observations in the STF scenario. As walk
speed becomes slower from Fig. 18(a), (b), to (c), the variations in
zone size become small because a larger portion of time is used for
walking. The increase in the overall workload also increases the
variations in zone size, and is related to picker blocking. Picker
blocking increases with the batch size and the variations in zone
size are larger. Thus, the most downstream picker has more
opportunities for picks. In the STD scenario, the faster walk speed
and large batch size assigns a larger zone to the most downstream
picker.

5.5. Insights

The amount of picker blocking increases when moving from
the model with the assumption of no hand-off delay and the
infinite backward walk speed compared to the model with the
assumption of hand-off delay and finite backward walk speed. The
release of the iþPKth batch, where PK represents the number of
pickers, requires a period of time after the completion of the ith
batch due to the hand-off delays and the backward walk times.
Thus, the distance between iþPKth and iþPK�1st lengthens and
picker blocking decreases. Some studies (Bartholdi and Eisenstein,
1996a, 1996b; Bartholdi et al., 2001) have assumed infinite walk
speed and instantaneous hand-offs, but these assumptions lead to
the overestimation of picker blocking. In fact, picker blocking
lessens because more detailed models of bucket brigade order
picking systems include finite forward and backward walk spends
and account for hand-off delay. Our results support the previous
finding that management can use bucket brigade OPSs with
pickers sequenced from slowest-to-fastest to improve perfor-
mance even when accounting for picker blocking explicitly.

6. Conclusions

This paper has made two important contributions to under-
standing bucket brigade OPS operations. First, an analytical model
of picker blocking was constructed based on the interactions
between two pickers under various walk speed assumptions.
Second, based on the analytical model and additional simulation
studies, the impacts by hand-off delay and backward walk speed
were investigated. The modeling of both hand-off delays and finite
backward walk speeds resulted in lower estimates of picker
blocking delay.

The analytical models identified that a bucket brigade system
experiences picker blocking when there is a difference of workload
per pick face. Batch picking can reduce picker blocking, because it
decreases the variance of workload per pick face. However,
modeling pickers with varying levels of ability can also lead to
relative differences in workload per pick face. Our study confirms
previous results that when skill differences among pickers exist,
management can sequence pickers from slowest-to-fastest to
improve OPS performance. In addition, bucket brigade OPSs cause
pickers to stay in a limited area and learn their operation
environments.

Our assumptions regarding hand-off policies which induce
hand-off delays maintains constant WIP in the system. Koo
(2009) has suggested relaxing the hand-off policy and allowing
more WIP in the system. Applying Little's law that states through-
put is proportional to the ratio of WIP/cycle time to bucket brigade
order picking, we recognize if WIP is constant, throughput
inevitably drops as the cycle time increases which can be caused
by picker blocking. Therefore, warehouse managers wanting to
increase throughput should consider allowing WIP to increase as
suggested by Koo (2009) or decrease the batch size to reduce the
cycle time.

Our work suggests two streams of future research: 1) devel-
oping an integrated throughput model considering hand-off
delays; and 2) identifying mitigation methods for less picker
blocking. The hand-off delay in general is not an issue of manage-
ment when the picking time is not significant. However, it
becomes an issue as the pick time increases relative to the walk
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Fig. 18. Zone size per pickers (five-picker, 100 pick faces) with: (a) pt:ft:bt¼1:0.025:0125 and batch size¼20; (b) pt:ft:bt¼1:0.1:0.05 and batch size¼20; (c) pt:ft:
bt¼1:0.5:0.25 and batch size¼20; and (d) pt:ft:bt¼1:0.1:0.05 and batch size¼100.
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time. In bucket brigade order picking, picker blocking can be
mitigated by allowing additional WIP (Koo, 2009). However, more
WIP could slow operational performance (Cachon and Terwiesch,
2013). Thus, reducing picker blocking while holding WIP as low as
possible is desirable.
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Appendix A. Comparison between analytical models and
simulation results

We validate the analytical model in Eq. (3) via a comparison
with the simulation models. A simulation comparison result for
four different layouts (n¼10, 20, 50, and 100) appears in Fig. A1.
For each simulation, we specify the pick density on the range of
0.01–0.99 with the interval¼0.01 with 20 runs per instance. Picker
blocking becomes less significant when walk speed is very slow.
The relative error gap between the analytical models and the four
simulation results shows, on average, 0.52%, with a minimum gap
of 0.00% and a maximum gap of 5.6%. Picker blocking may increase
as the workload increases.

In addition, we can validate the analytical model in Eq. (5) via a
comparison with the simulation models (Fig. A2). The error gap
between the analytical models and the four simulation results is, on
average, 0.19%, with a minimum gap of 0.00% and a maximum gap of

1.22%. If our two pickers instantaneously move forward and backward,
picker blocking decreases as they spend more time picking.
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Fig. A1. (a) Percentage of time blocked in two-picker case with unit forward and instantaneous backward walk times (analytical results), and (b) percentage of gap error
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