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Abstract Bridging the gap between axiomatic Data Envelopment Analysis (DEA)
and econometric Stochastic Frontier Analysis (SFA) has been one of the most vexing
problems in the field of efficiency analysis. Recent developments in multivariate con-
vex regression, particularly Convex Nonparametric Least Squares (CNLS) method,
have led to the full integration of DEA and SFA into a unified framework of pro-
ductivity analysis, referred to as Stochastic Nonparametric Envelopment of Data
(StoNED). The unified framework of StoNED offers a general and flexible platform
for efficiency analysis and related themes such as frontier estimation and production
analysis, allowing one to combine existing tools of efficiency analysis in novel ways
across the DEA-SFA spectrum, facilitating new opportunities for further method-
ological development. This chapter provides an updated and elaborated presentation
of the CNLS and StoNED methods. This chapter also extends the scope of the
StoNED method in several directions. Most notably, this chapter examines quantile
estimation using StoNED and an extension of the StoNED method to the general
case of multiple inputs and multiple outputs. This chapter also provides a detailed
discussion of how to model heteroscedasticity in the inefficiency and noise terms.
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7.1 Introduction

Efficiency analysis is an essential and extensive research area that provides answers
to such important questions as: Who are the best performing firms and can we
learn something from their behavior?1 What are the sources of efficiency differences
across firms? Can efficiency be improved by government policy or better managerial
practices? Are there benefits to increasing the scale of operations? These are examples
of important questions we hope to resolve with efficiency analyses.

Efficiency analysis is an interdisciplinary field that spans such disciplines as
economics, econometrics,2 operations research and management science,3 and en-
gineering, among others. The methods of efficiency analysis are utilized in several
fields of application including agriculture, banking, education, environment, health
care, energy, manufacturing, transportation, and utilities, among many others. Ef-
ficiency analysis is performed at various different scales. Micro level applications
range from individual persons, teams, production plants and facilities to company
level and industry level efficiency assessments. Macro level applications range from
comparative efficiency assessments of production systems or industries across coun-
tries to efficiency assessment of national economies. Indeed, efficiency improvement
is one of the key components of productivity growth (e.g., Färe et al. 1994), which
in turn is the primary driver of economic welfare. The benefits to understanding the
relationship between efficiency and productivity and quantifying efficiency cannot
be overstated. In words of Paul Krugman (1992, p. 9), “Productivity isn’t everything,
but in the long run it is almost everything. A country’s ability to improve its stan-
dard of living over time depends almost entirely on its ability to raise its output per
worker.” Note that macro-level performance of a country is an aggregate of the in-
dividual firms operating within that country. Therefore, sound micro-foundations of
efficiency analysis are critical for the integrity of productivity and efficiency analysis
at macro level.

Unfortunately, there currently is no commonly accepted methodology of effi-
ciency analysis, but the field is divided between two competing approaches: Data
envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA).4

1 We will henceforth use the term “firm” referring to any production unit that transforms inputs to
output, including both non-profit and for-profit organizations. The firm can refer to an establishment
(facility) or sub-division of a company or to an aggregate entity such as an industry, a region, or a
country.
2 Observe that 13 of the 100 most cited articles published in a leading field journal, the Journal
of Econometrics, are efficiency analysis papers, including Simar and Wilson (2007) that has 436
citations, making it the #32 most cited paper in the journal in just 6 years from its publication
(citations data gathered from Scopus, Nov 25, 2013).
3 In operations research and management science, Charnes et al. (1978) ranks #1 as most cited article
published in the European Journal of Operational Research (EJOR) and Banker et al. (1984) is the
#1 most cited article in Management Science, two of the leading journals of this field (the flagship
journals of EURO and INFORMS, respectively). In fact, Charnes et al. article has more than five
times more citations than the 2nd most cited paper in EJOR (Nov 25, 2013).
4 Citation statistics of some of the key papers provide undisputable evidence about the significant
influence of this field. The four most cited papers are Charnes et al. (1978) with 6152 citations,
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Data envelopment analysis (DEA, Farrell 1957; Charnes et al. 1978) is an ax-
iomatic, mathematical programming approach to efficiency analysis. DEA’s main
advantage compared to econometric, regression-based tools is its nonparametric
treatment of the frontier, building upon axioms of production theory such as free
disposability (monotonicity), convexity (concavity), and constant returns to scale
(homogeneity). DEA does not assume any particular functional form for the fron-
tier or the distribution of inefficiency. It’s direct, data-driven approach is helpful
for communicating the results of efficiency analysis to decision-makers. However,
the main shortcoming of DEA is that it attributes all deviations from the frontier to
inefficiency. This is often a heroic assumption.

Stochastic frontier analysis (SFA,Aigner et al. 1977; Meeusen and van den Broeck
1977) is often, incorrectly, viewed as a direct competitor of DEA. The key strength
of SFA is its probabilistic modeling of deviations from the frontier, which are de-
composed into a non-negative inefficiency term and an idiosyncratic error term that
accounts for omitted factors such as unobserved heterogeneity of firms and their oper-
ating environments, random errors of measurement and data processing, specification
errors, and other sources of noise. In contrast to DEA, SFA utilizes parametric regres-
sion techniques, which require ex ante specifications of the functional forms of the
frontier and the inefficiency distribution. Since the economic theory rarely justifies a
particular functional form, flexible functional forms such as translog are frequently
used. However flexible functional forms often violate axioms of production theory,
whereas imposing the axioms will reduce flexibility. In summary, the DEA and SFA
methods are not direct competitors but rather complements: in the tradeoff between
DEA and SFA something is sacrificed for something to be gained. Namely DEA
does not model noise, but is able to impose axiomatic properties and estimate the
frontier non-parametrically, while SFA cannot impose axiomatic properties, but has
the benefit of modeling inefficiency and noise.

Bridging the gap between axiomatic DEA and stochastic SFA was for a long time
one of the most vexing problems in the field of efficiency analysis. The recent works
on convex nonparametric least squares (CNLS) by Kuosmanen (2008), Kuosmanen
and Johnson (2010), and Kuosmanen and Kortelainen (2012) have led to the full
integration of DEA and SFA into a unified framework of productivity analysis, which
we refer to as stochastic nonparametric envelopment of data (StoNED).5

We see the development of StoNED as a paradigm shift for efficiency analysis. It
is no longer necessary to decide if modeling noise is more important than imposing
axioms of production theory: we can do both using StoNED. The unified framework
of StoNED offers deeper insights to the foundations of DEA and SFA, but it also
provides a more general and flexible platform for efficiency analysis and related

Banker et al. (1984) with 3415 citations, Farrell (1957) with 3296 citations, and Aigner et al. (1977)
with 1875 citations (Scopus, Nov 25, 2013).
5 The term StoNED was coined by Kuosmanen (2006). By request of referees, Kuosmanen and
Kortelainen (2012) used the term stochastic “non-smooth” envelopment, as their model specification
involves parametric distributional assumptions. In this chapter we show that the distributional
assumptions can be relaxed: see Sect. 7.5.2.3 and 7.6.2.
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themes such as frontier estimation and production analysis. Further, a number of
extensions to the original DEA and SFA methods have been developed over the past
decades. The unified StoNED framework allows us to combine the existing tools of
efficiency analysis in novel ways across the DEA-SFA spectrum, facilitating new
opportunities for further methodological development.

The main objective of this chapter is to provide an updated and elaborated pre-
sentation of the CNLS and StoNED methods, the most promising new tools for
axiomatic nonparametric frontier estimation and efficiency analysis under stochas-
tic noise. Our secondary objective is to extend the scope of the StoNED method in
several dimensions. This chapter provides the first extension of the StoNED method
to the general case of multiple inputs and multiple outputs. We also consider quan-
tile estimation using StoNED, and present a detailed discussion of how to model
heteroscedasticity in the inefficiency and noise terms.

The rest of this chapter is organized as follows. Section 7.2 introduces the unified
StoNED framework and its special cases by reviewing alternative sets of assumptions
that motivate different estimation methods applied in productivity analysis. Our focus
is explicitly on the axiomatic DEA-style approaches. Section 7.3 presents the CNLS
regression as a quadratic programming problem. Section 7.4 discusses the intimate
connections between CNLS and DEA, and introduces a step-wise C2NLS estimator.
Section 7.5 further develops the step-wise estimation approach for the StoNED esti-
mator. Section 7.6 reviews some important extensions to the StoNED, including the
multiplicative formulation (Sect. 7.6.1), observations from multiple time periods that
make up a panel data (Sect. 7.6.2), directional distance functions (DDF) for mod-
eling multiple output variables (Sect. 7.6.3), and quantile regression formulation
(Sect. 7.6.4). The model of contextual variables that represent operational condi-
tions or practices is examined in detail in Sect. 7.7. Testing of heteroscedasticity and
modeling heteroscedasticity of inefficiency and noise using a doubly-heteroscedastic
model discussed in Sect. 7.8. Finally, Sect. 7.9 concludes with discussion of some
promising avenues of future research.

7.2 Unified Frontier Model

To maintain direct contact with the SFA literature, we introduce the unified model
of frontier production function in the multiple input, single output case. Multiple
outputs can be modeled using cost functions (see Kortelainen and Kuosmanen 2012,
Sect. 7.4.4; and Kuosmanen 2012) and distance functions. A general multi-input
multi-output directional distance function model will be introduced in Sect. 7.6.3.

Production technology is represented by a frontier production function f (x), where
x is a m-dimensional input vector.6 Frontier f (x) indicates the maximum output that

6 For clarity, we denote vectors by bold lower case letters (e.g., x) and matrices by bold capital
letters (e.g., Z). All vectors are column vectors, unless otherwise indicated. Note: x′ denotes the
transpose of vector x.
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can be produced with inputs x, and hence the function f (x) characterizes the boundary
of the production possibility set. We assume that function f belongs to the class of
continuous, monotonic increasing, and globally concave functions that can be non-
differentiable (we denote this class as F2). This is equivalent to stating that the
production possibility set satisfies the classic DEA assumptions of free disposability
and convexity. In contrast to SFA, no specific functional form for f is assumed.

The observed output yi of firm i may differ from f (xi) due to inefficiency and
noise. We follow the SFA literature and introduce a composite error term εi = vi−ui ,
which consists of the inefficiency term ui > 0 and the stochastic noise term vi ,
formally,

yi = f (xi) + εi
= f (xi) − ui + vi , i = 1, . . ., n (7.1)

Variables ui and vi (i = 1, . . ., n) are random variables that are assumed to be statisti-
cally independent of each other as well as of inputs xi . We assume that the inefficiency
term has a positive mean and a constant finite variance, that is, E(ui) = μ > 0 and
V ar(ui) = σ 2

u < ∞. We further assume zero mean noise with a constant finite
variance, that is, E(vi) = 0 and V ar(vi) = σ 2

v <∞. Assuming σ 2
u and σ 2

v are con-
stant across firms is referred to as homoscedasticity; models with heteroskedastic
inefficiency and noise will be discussed in Sect. 7.8. For the sake of generality and to
maintain the fully nonparametric orientation, we do not introduce any distributional
assumptions for ui or vi at this point. However, some estimation techniques to be
introduced below require additional parametric assumptions.

In model (7.1), the deterministic part (i.e., production function f ) is defined anal-
ogous to the DEA literature, while the stochastic part (i.e., composite error term εi)
is defined similar to SFA. As a result, model (7.1) encompasses the classic models
of the SFA and DEA literature as its constrained special cases. Note that in this
chapter we use the term “model” in the sense of the econometric literature to refer
to the description of the data generating process (DGP). DEA and SFA are alter-
native estimators or methods for estimating the production function f, the expected
inefficiency μ, and the firm-specific realizations of the random inefficiency term ui .
We note that in the DEA literature it is common to use the term “model” for the
linear programming problem (e.g., LP model) or other mathematical programming
formulations for computing the estimator. To avoid confusion, we will follow the
econometric terminology and refer to Eq. (7.1) and the related assumptions as the
model, whereas DEA, SFA, CNLS, and StoNED are referred to as estimators. In
this terminology, “DEA model” or “SFA model” refer to the specific assumptions
regarding the variables of model (7.1).

The literature of efficiency analysis has conventionally focused on fully paramet-
ric or nonparametric versions of model (7.1). Parametric models postulate a priori a
specific functional form for f (e.g., Cobb-Douglas, translog, etc.) and subsequently
estimate its unknown parameters. In contrast, axiomatic nonparametric models as-
sume that f satisfies certain regularity axioms (e.g., monotonicity and concavity), but
no particular functional form is assumed. At this point, we must emphasize that the

timo.kuosmanen@aalto.fi



196 T. Kuosmanen et al.

term nonparametric does not necessarily imply that there are no restrictive assump-
tions. It is not true that the assumptions of a nonparametric model are necessarily
less restrictive than those of a parametric model. For example, the fully nonpara-
metric DEA estimator of model (7.1) is based on the assumption of no noise (i.e.,
vi = 0 for all firms i). Assuming away noise does not require any specific parametric
specification, but it is nevertheless a restrictive assumption. In fact, it is less restric-
tive to impose parametric structure and assume vi are identically and independently
distributed according to the normal distribution N (0, σ 2

v ). Note that this parametric
specification contains the fully nonparametric “deterministic” case of no noise as its
restricted special case, obtained by imposing the parameter restriction σ 2

v = 0.
In addition to the pure parametric and nonparametric alternatives, the intermediate

cases of semiparametric and semi-nonparametric models have become increasingly
popular in recent years. However, the exact meaning of this terminology is often
confused. Chen (2007) provides an intuitive and useful definition that we find worth
quoting:

An econometric model is termed “parametric” if all of its parameters are in finite di-
mensional parameter spaces; a model is “nonparametric” if all of its parameters are
in infinite-dimensional parameter spaces; a model is “semiparametric” if its parameters
of interests are in finite-dimensional spaces but its nuisance parameters are in infinite-
dimensional spaces; a model is “semi-nonparametric” if it contains both finite-dimensional
and infinite-dimensional unknown parameters of interests. Chen (2007), p. 5552, footnote 1.

Note that according to the above definition both the semiparametric and semi-
nonparametric model contain a nonparametric part and a parametric part. The
distinction between the terms semiparametric and semi-nonparametric is subjective,
dependent on whether we are interested in the empirical estimates of the nonpara-
metric part or not. The same model can be either semiparametric, if our main interest
is in the parameter estimates of the parametric part and the nonparametric part is of
no particular interest, or semi-nonparametric, if we are interested in the results of
the nonparametric part.

Model (7.1) can be interpreted as a neoclassical or frontier model depending on
the interpretation of the disturbance term (cf., Kuosmanen and Fosgerau 2009). The
neoclassical model assumes that all firms are efficient and disturbances are random,
uncorrelated noise terms. Frontier models typically assume that all or some part of
the deviations from the frontier are attributed to systematic inefficiency.

Table 7.1 combines the criteria described above to identify six alternative esti-
mation methods commonly used for estimating the variants of the unified model
(7.1), together with some canonical references. On the parametric side, OLS refers
to ordinary least squares, PP means parametric programming, COLS is corrected
ordinary least squares, and SFA is stochastic frontier analysis (see, e.g., Kumb-
hakar and Lovell 2000, for an introduction to the parametric approach to efficiency
analysis). The focus of this chapter is on the axiomatic nonparametric and semi-
nonparametric variants of model (7.1): CNLS refers to convex nonparametric least
squares (Sect. 7.3), DEA is data envelopment analysis (Sect. 7.4.1), C2NLS is cor-
rected convex non-parametric least squares (Sect. 7.4.2), and StoNED is stochastic
nonparametric envelopment of data (Sect. 7.5).
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Table 7.1 Classification of methods

Parametric Nonparametric

Central tendency OLS
Cobb and Douglas
(1928)

CNLS (Sect. 7.3)
Hildreth (1954)
Hanson and Pledger
(1976)

Deterministic frontier Sign constraints PP
Aigner and Chu (1968)
Timmer (1971)

DEA (Sect. 7.4.1)
Farrell (1957)
Charnes et al. (1978)

2-step estimation COLS
Winsten (1957)
Greene (1980)

C2NLS (Sect. 7.4.2)
Kuosmanen and
Johnson (2010)

Stochastic frontier SFA
Aigner et al. (1977)
Meeusen and van den
Broeck (1977)

StoNED (Sect. 7.5)
Kuosmanen and
Kortelainen (2012)

7.3 Convex Nonparametric Least Squares

In this section we consider the special case of model (7.1) where the composite error
term ε consists exclusively of noise v, and there is no inefficiency (i.e., we assume
u= 0). This special case is relevant for modeling firms that operate in the competitive
market environment, which meets (at least by approximation) the conditions of
perfect competition considered in microeconomic theory. We will relax this no
inefficiency assumption from Sect. 7.4 onwards, but the insights gained in this
section will be critical for understanding the developments in the following sections.

In the case of a symmetric zero-mean error term that satisfies E(εi)= 0 for all i,
the expected value of output conditional on inputs equals the value of the production
function, that is,

E(yi |xi) = E(f (xi)) + E(εi) = f (xi).

Therefore, in this setting the production function f can be estimated by nonparametric
regression techniques. Note that the term “regression” refers to the conditional mean
E(yi |xi).

Hildreth (1954) was the first to consider nonparametric regression subject to
monotonicity and concavity constraints in the case of a single input variable x (see
also Hanson and Pledger 1976). Kuosmanen (2008) extended Hidreth’s approach to
the multivariate setting with a vector-valued x, and coined the term convex nonpara-
metric least squares (CNLS) for this method. CNLS builds upon the assumption
that the true but unknown production function f belongs to the set of continuous,
monotonic increasing and globally concave functions, F2, imposing exactly the same
production axioms as standard DEA.
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The CNLS estimator of function f is obtained as the optimal solution to the infinite
dimensional least squares problem

min
f

n∑

i=1

(yi − f (xi))2

subject to

f ∈ F2 (7.2)

The functional form of f is not specified beforehand. Rather, the optimal solution
will identify the best-fit function f from the family F2. Note that set F2 includes an
infinite number of functions, which makes problem (7.2) impossible to solve through
brute force trial and error. Further, problem (7.2) does not generally have a unique
solution for any arbitrary input vector x, but a unique solution exists for estimating f
for the observed data points (xi , yi), i = 1, . . ., n. Therefore, we will next discuss the
estimation of f for the observed data points and extrapolation to unobserved points
in sub-section 7.3.2.

7.3.1 CNLS Estimator for the Observed Data Points

A unique solution to problem (7.2) for the observed data points (xi , yi), i = 1, . . ., n,
can be found by solving the following finite dimensional quadratic programming
(QP) problem

min
α,β,ε

n∑

i=1

(εCNLS
i )

2

subject to

yi = αi + β′ixi + εCNLS
i ∀i

αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i (7.3)

where αi and βi define the intercept and slope parameters of tangent hyperplanes
that characterize the estimated piece-wise linear frontier (note that β′ixi = βi1xi1 +
βi2xi2 + ... + βimxim). Symbol εCNLS

i denotes the CNLS residual, which is an
estimator of the true but unobserved εi = vi . Note that in (7.3) the Greek letters are
variables and the Latin letters are parameters (i.e., (xi , yi) are observed data).

Kuosmanen (2008) introduced the QP formulation (7.3), and proved its equiva-
lence with the infinite dimensional optimization problem (7.2). Specifically, if we
denote the value of the objective function in the optimal solution to the infinite di-
mensional CNLS formulation (7.2) by SSECNLS (SSE = the sum of squares of errors),
and that of the finite QP problem (7.3) by SSEQP , then the equivalence can be stated
as follows.
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Theorem 1 SSECNLS = SSEQP .

Proof. See Kuosmanen (2008), Theorem 2.1.
The equivalence result does not restrict to the objective functions, the optimal

solution to problem (7.3) also provides us unique estimates of function f for the
observed data points. Once the optimal solution is found, we will add “hats” on top
of α̂i , β̂i , and ε̂CNLS

i , and refer to them as estimators.7 In other words, αi , βi , and
εCNLS
i are variables of problem (7.3), whereas estimators α̂i , β̂i , and ε̂CNLS

i provide
the optimal solution to problem (7.3). Given α̂i and β̂i from (7.3), we define

f̂ CNLS(xi) = α̂i + β̂
′
ixi = yi − ε̂CNLS

i . (7.4)

This estimator of function f satisfies the following properties:

Theorem 2 In the case of the neoclassical model with no inefficiency, f̂ CNLS(xi)
is a unique, unbiased and consistent estimator of f (xi) for the observed data points
(xi , yi), i = 1, . . ., n.

Proof. Uniqueness is proved by Lim and Glynn (2012), Proposition 1. Unbiased-
ness follows from Seijo and Sen (2011), Lemma 2.4. Consistency is proved under
slightly different assumptions in Seijo and Sen (2011), Theorems 3.1 and 3.2, and
Lim and Glynn (2012), Theorems 1 and 2.

The constraints of the QP problem (7.3) have the following compelling interpreta-
tions.8 The first constraint of the least squares formulation (7.3) is a linear regression
equation. However, the CNLS regression does not assume linear f. note that coeffi-
cients αi and βi are specific to each observation i. Using the terminology of DEA,
αi and βi are directly analogous to the multiplier coefficients of the dual formulation
of DEA. The inequality constraints in (7.3) can be interpreted as a system of Afriat
inequalities (compare with Afriat 1967, 1972; and Varian 1984). As Kuosmanen
(2008) emphasizes, the Afriat inequalities are the key to modeling the concavity
axiom in the general multiple regression setting.

Coefficients αi and βi should not be misinterpreted as parameters of the estimated
function f, but rather, as parameters characterizing tangent hyperplanes to an un-
known production function f. These coefficients characterize a convex piece-wise
linear function, to be examined in more detail the next sub-section. At this point, we
must emphasize that we did not assume or restrict the domain F2 to only include
piece-wise linear function. In fact, it turns out that the “optimal” functional form
to solving the infinite dimensional least squares problem (7.2) is always a convex
piece-wise linear function characterized by coefficients αi and βi . However, this
optimal solution is unique only for the observed data points.

7 In application, when estimators are calculated for a specific data set we will refer to these as
estimated parameters.
8 Note this formulation is written for ease of interpretation. Other formulations might be preferred
to improve computational performance.
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7.3.2 Extrapolating to Unobserved Points

In many applications we are interested in estimating the frontier not only for the
observed data points, but also for unobserved input vectors x. Although the CNLS
estimator is unique for the observed data points, there is no unique way of extrap-
olating the CNLS estimator to unobserved points. In general, the optimal solution
to the infinite dimensional least squares problem (7.2) is not unique, but there exists
a set of functions f ∗ ∈ F ∗

2 that solve the optimization problem (7.2). Formally, we
denote the set of alternate optima to (7.2) as

F ∗
2 =

{
f ∗

∣∣∣∣∣f
∗ = arg min

f∈F2

n∑

i=1

(yi − f (xi))2

}
.

Kuosmanen (2008) characterizes the minimum and maximum bounds for the func-
tions f ∗ ∈ F ∗

2 . It turns out that both bounds are piece-wise linear functions. However,
only the minimum bound satisfies the postulated monotonicity and concavity proper-
ties. To resolve the non-uniqueness issue, Kuosmanen and Kortelainen (2012) appeal
to the minimum extrapolation principle and propose to use the lower bound

f̂ CNLS
min (x) = min

α,β

{
α + β′x

∣∣α + β′xi ≥ f̂ CNLS(xi) ∀i = 1, . . ., n
}

(7.5)

Note that the lower bound f̂ CNLS
min is simply the DEA estimator (single output, variable

returns to scale) applied to the observed inputs xi and the fitted outputs f̂ CNLS(xi)
obtained from Eq. (7.4).9 The lower bound function satisfies the postulated properties
of monotonicity and concavity. We can make the following connection between the
lower bound (7.5) and the infinite dimensional CNLS problem (7.2).

Theorem 3 Function f̂ CNLS
min stated in Eq. (7.5) is one of the optimal solutions to the

infinite dimensional optimization problem (7.2). It is the unique lower bound for the
functions that solve problem (7.2), formally

f̂ CNLS
min (x) ≤ f ∗(x) for all x ∈ �m+ and f ∗ ∈ F ∗

2 .

Proof. See Kuosmanen (2008) Theorem 4.1.
Note that while f̂ CNLS is unbiased and consistent for the observed points xi

(Theorem 3), the use of the piece-wise linear minimum function f̂ CNLS
min will cause

downward bias in finite samples as we apply the minimum extrapolation principle to
extrapolate to unobserved points x. Within the observed range of data, the downward
bias will diminish as the sample size increases.

It is also worth noting that the optimal solution to the QP problem (7.3) does
not necessarily produce unique coefficients α̂i and β̂i . Although f̂ CNLS

min is a unique

9 In addition to the use of DEA to identify the lower bound function, there is a more fundamental
connection between CNLS and DEA, to be explored in Sect. 7.4.
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lower bound, consistent with the minimum extrapolation principle, the coefficients
α̂i and βi obtained as the optimal solution to (7.5) need not be unique either. It is
well-known in the DEA literature that these multiplier coefficients are not unique in
the vertices of the piece-wise linear function.

7.3.3 Computational Issues

The CNLS problem (7.3) has linear constraints and a quadratic objective function,
hence it can be solved by QCP solvers such as CPLEX or MOSEK.10 Standard
solvers work well in relatively small sample sizes (50–200 firms) available in the
majority of published applications of efficiency analysis. However, since the number
of Afriat inequalities in (7.3) grows at a quadratic rate as a function of the number of
observations, the computational burden becomes a significant issue when the sample
size increases beyond 300 firms. Note that adding a new firm to the sample increases
the number of unknown parameters by m+ 2, and the number of Afriat inequality
constraints increases by 2n. Introducing an additional input variable increases the
number of unknown parameters by n, but there is no impact on the number of
constraints. For these reasons, standard QP algorithms are inadequate for handling
large samples with several hundreds or thousands of observations.

As a first step towards improving computational performance in small samples
and to allow for larger problems to be solved, Lee et al. (2013) propose to follow
the strategy of Dantzig et al. (1954, 1959) to iteratively identify and add violated
constraints. The algorithm developed by Lee et al. first solves a relaxed CNLS
problem containing an initial set of constraints, those that are likely to be binding, and
then iteratively adds a subset of the violated concavity constraints until a solution that
does not violate any constraint is found. In computational experiments, this algorithm
allowed problems with up to 1000 firms to be solved. Therefore, this algorithm has
practical value especially in large sample applications and simulation-based methods
such as bootstrapping or Monte Carlo studies. Another recent study by Hannah and
Dunson (2013) implements CNLS in Matlab, reporting promising results. However,
further algorithm development is needed to make the CNLS problem computable in
very large sample sizes containing several thousands or millions of observations.

7.4 Deterministic Frontiers

In this section we consider another special case of model (7.1) where the composite
error term ε consists exclusively of inefficiency u, and there is no noise (i.e., v= 0).
In the SFA literature, this special case is commonly referred to as the deterministic
model. This does not imply, however, that probabilistic inferences are impossible.

10 Examples of computational codes for GAMS are available on the StoNED website:
www.nomepre.net/stoned/.
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Banker (1993) was the first to show that DEA can be understood as a maxi-
mum likelihood estimator of the deterministic model, with a statistical (probabilistic)
foundation. However, the known statistical properties and inferences in the DEA lit-
erature restrict to the finite sample error that generally diminishes as the sample size
increases. Or stated differently, the model specification and input and output data in
the deterministic model are assumed to be exact and correct, so the only probabilistic
component is the random sample of observations drawn from the production pos-
sibility set. This same deterministic model and its associated statistical foundation
are used for inference in the bootstrapping methods (e.g., Simar and Wilson 1998,
2000). Thus, statistical inference and confidence intervals estimated using bootstrap-
ping methods only account for uncertainty in sampling and do not account for other
sources of random variation or noise. Thus, bootstrap confidence intervals of DEA
are not directly comparable to confidence intervals of other models that are genuinely
stochastic in their nature (e.g., the SFA confidence intervals).

It is important to recognize that if the no noise assumption (v= 0) of the de-
terministic model does not hold, the statistical foundations of DEA collapse. The
bootstrapping methods to adjust for the small sample are not a remedy against noise,
rather adjusting for the sampling bias can make the DEA estimator worse if data
are perturbed by noise. The stochastic case that includes both inefficiency and noise
simultaneously will be considered in Sect. 7.5. The purpose of this section is to
establish some useful connections between the ‘neoclassical’ CNLS and the ‘deter-
ministic’ DEA to develop a unified framework and pave the way for a stochastic
nonparametric StoNED estimator.

7.4.1 DEA as Sign-Constrained CNLS

In the single-output case, the variable returns to scale (VRS) DEA estimator of
production function f can be stated as

f̂ DEA(x) = min
α,β

{
α + β′x

∣∣α + β′xi ≥ yi ∀i = 1, . . ., n
}

= max
λ

{
n∑

h=1

λhyh

∣∣∣∣∣x ≥
n∑

h=1

λhxh ;
n∑

h=1

λh = 1

}
(7.6)

Note the difference between formulations (7.5) and (7.6): the former one uses the
estimated output values f̂ CNLS(xi), whereas in the latter one uses the observed out-
puts yi . Otherwise the formulations (7.5) and (7.6) are equivalent. The minimization
formulation in (7.6) can be interpreted as the DEA multiplier formulation, whereas
the maximization formulation of (7.6) is known as the DEA envelopment formula-
tion. The duality theory of linear programming implies that the two formulations are
equivalent.
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Consider next a version of the CNLS estimator with an additional sign constraint
on the residuals

min
α,β,ε

n∑

i=1

(εCNLS−
i )

2

subject to

yi = αi + β′ixi + εCNLS−
i ∀i

αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
εCNLS−
i ≤ 0 ∀i (7.7)

Comparing (7.3) and (7.6), we see that the only difference is the last constraint
of (7.7), which is not present in the original CNLS formulation. Due to the sign
constraint, Kuosmanen and Johnson (2010) interpret (7.6) as an axiomatic, nonpara-
metric counterpart to the classic parametric programming approach of Aigner and
Chu (1968).

We now establish the formal connection between CNLS and DEA as follows. Let
f̂ CNLS−

min (x) denote the piece-wise linear function obtained by applying Eq. (7.5) to
the observed inputs xi and the fitted values ŷi of the sign-constrained formulation
(7.7).

Theorem 4 The sign-constrained CNLS estimator is equivalent to the DEA VRS
estimator:

f̂ CNLS−
min (x) = f̂ DEA(x)

Proof. Follows directly from Theorem 3.1 in Kuosmanen and Johnson (2010).
Although Theorem 4 was stated in the VRS case, the equivalence of DEA and

sign-constrained CNLS does not restrict to the VRS case. Indeed parallel results
are available for the other standard specifications of returns to scale by imposing
additional constraints on the coefficients αi in formulations (7.3) or (7.7) as follows:

Constant returns to scale (CRS): impose αi = 0 ∀i
Non-increasing returns to scale (NIRS): impose αi ≥ 0 ∀i
Non-decreasing returns to scale (NDRS): impose αi ≤ 0 ∀i

Similarly, if the convexity assumption of DEA is relaxed the free disposable hull
(FDH), Afriat (1972), estimator provides the minimum envelopment of data subject
to free disposability. Keshvari and Kuosmanen (2013) show that the FDH formulation
is a sign-constrained special case of isotonic nonparametric least squares (INLS),
which in turn is the concavity relaxed version of CNLS.

From a practical point of view, the least squares interpretation of DEA opens up
new avenues for applying tools from econometrics to DEA. For example, Kuosmanen
and Johnson (2010) propose to measure the goodness-of-fit of DEA estimator by
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using the standard coefficient of determination from regression analysis, specifically

R2 =
∑n
i=1

(
ŷi − ȳ

)2

∑n
i=1 (yi − ȳ)2

. (7.8)

Where ȳ = 1
n

n∑
i=1
yi is the average output in the sample. The R2 statistic measures

the proportion of output variation that is explained by the DEA frontier. While this
variance decomposition can be applied to any regression model (including DEA), we
note that DEA does not maximize the value of R2 and hence negative R2 values are
possible for DEA estimators. This variance decomposition assumes a single output,
however, one could compute and report separate R2 statistics for each output.

7.4.2 Corrected CNLS

DEA builds on the minimum extrapolation principle to estimate the smallest function
that envelops all data points. From the statistical point of view, insisting on the
minimum extrapolation results in a systematic downward bias (i.e., the small sample
error of DEA). For the deterministic model, Kuosmanen and Johnson (2010) show
that a consistent and asymptotically unbiased estimator is obtained by applying a
nonparametric variant of the classic COLS estimator. The proposed corrected convex
nonparametric least squares (C2NLS) estimator has always better discriminating
power than DEA: the C2NLS frontier envelops the DEA frontier everywhere, and the
probability of finding multiple efficient units in randomly generated data approaches
zero.

The C2NLS method combines the nonparametric CNLS regression with the
stepwise COLS approach first suggested by Winsten (1957), and more formally de-
veloped by Gabrielsen (1975) and Greene (1980). In this approach the most efficient
firm in the sample is considered to be fully efficient, and the remaining inefficiency
terms are normalized accordingly relative to the most efficient firm in the sample.
A widely used panel data approach by Schmidt and Sickles (1984) applies a similar
two-step approach (see Sect. 7.6.2 for details).

The essential steps of the C2NLS routine can be described as follows:

Step 1 Apply the CNLS estimator (7.3) to estimate the conditional mean output
E(yi |xi).
Step 2 Identify the most efficient unit in the sample (i.e., ûC2NLS

benchmark =
max

h∈{1,...,n}ε̂
CNLS
h ) as the benchmark. Adjust the CNLS residuals according to ûC2NLS

i =
( max
h∈{1,...,n}ε̂

CNLS
h ) − ε̂CNLS

i .

Step 3 Apply Eq. (7.5) to estimate the minimum function f̂ CNLS
min (x). Adjust the

minimum function by adding the residual of the benchmark firm to estimate the
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frontier using

f̂ C2NLS(x) = f̂ CNLS
min (x) + ûC2NLS

benchmark

Thus obtained ûC2NLS
i can be used as measures of inefficiency in the deterministic

setting without noise. The most appealing properties of the C2NLS estimator can be
summarized as follows:

Theorem 5 if σv = 0, then the C2NLS estimator is statistically consistent:

plim
n→∞

f̂ C2NLS(xi) = f (xi) f or all i = 1, . . ., n.

Proof. Follows from Theorem 4.1 in Kuosmanen and Johnson (2010).

Theorem 6 the C2NLS frontier envelops the DEA frontier, that is,

f̂ C2NLS(x) ≥ f̂ DEA(x) ∀x ∈ �m+.
Proof. Follows from Theorem 4.2 in Kuosmanen and Johnson (2010).

Note that the inefficiency estimates ûC2NLS
i are non-negative by construction,

with the value of zero indicating full efficiency. The inefficiency measures can be
converted to Farrell (1957) output efficiency scores (θ̂C2NLS

i ∈ [0,1]) by using

θ̂C2NLS
i = yi

f̂ C2NLS(xi)
= yi

yi + ûC2NLS
i

. (7.9)

7.5 Stochastic Nonparametric Envelopment of Data (StoNED)

We are now equipped to consider the general stochastic nonparametric model that
does not restrict to any particular functional form of f and includes both inefficiency
u and stochastic noise v. Before proceeding to estimation, we must emphasize that
the shift from the deterministic case to a stochastic model is rather dramatic. For
example, measuring the distance from an observed point to the frontier does not
provide a measure of inefficiency if the observed point is perturbed by noise. While
probabilistic inference in the deterministic case only investigates finite sample er-
ror, in the stochastic model the noise term is still relevant even if the sample size
approaches infinity. Clearly, when all data points are subject to noise enveloping all
observations would overestimate the true frontier production function. The CNLS
regression that fits a monotonic increasing and concave curve through the middle of
the cloud of data provides a natural starting point for the next generation of DEA
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that can deal with noise.11 Following Kuosmanen (2006), we refer to this approach
as stochastic nonparametric envelopment of data (StoNED).

Analogous to the parametric COLS and MOLS (modified OLS) estimators and the
nonparametric C2NLS, the StoNED estimator consists of multiple steps. The main
steps can be described as follows (a detailed description of each step follows below):

Step 1 Apply the CNLS estimator (7.3) to estimate the conditional mean output
E(yi |xi).
Step 2 Apply parametric methods (e.g., the method of moments or quasi-likelihood
estimation) or nonparametric methods (e.g., kernel deconvolution) to the CNLS
residuals εCNLS

i to estimate the expected value of inefficiency μ.

Step 3 Apply Eq. (7.5) to estimate the minimum function ĝCNLS
min (x). Adjust the

minimum function by adding the expected inefficiency μ to estimate the frontier
using

f̂ StoNED(x) = ĝCNLS
min (x) + μ̂

Step 4 Apply parametric methods (see e.g., Jondrow et al. 1982, JLMS hereafter) or
nonparametric deconvolution (e.g., kernel smoothing, Horrace and Parmeter 2011)
to estimate firm-specific inefficiency using the conditional mean E(ui

∣∣εCNLS
i ).

We will next describe each step in detail, noting that each step provides alternative
modeling choices (depending on the assumptions one is willing to impose), and that
it is not necessary to go through all of the steps. We discuss the information available
at the end of each step and the possible motivations for proceeding to further steps.

7.5.1 Step 1: CNLS Regression

The CNLS estimator was described in detail in Sect. 7.3 under the assumption of no
inefficiency (u= 0). If the observed outputs are subject to asymmetric inefficiency, as
the general frontier model (7.1) assumes, then the zero-mean assumption E(εi) = 0
of regression analysis is violated. Indeed, E(εi) = E(vi − ui) = −E(ui) < 0 due
to the asymmetric non-negative inefficiency term. Therefore, the CNLS estimator is
no longer a consistent estimator of the frontier production function f.

11 Banker and Maindiratta (1992) consider maximum likelihood estimation of the unified frontier
model subject to monotonicy and concavity constraints. However, their maximum likelihood prob-
lem appears to be computationally prohibitive. We are not aware of any application of this method.
Gstach (1998) presents another early attempt to incorporate noise in DEA. However, he needs to
make a rather restrictive assumption of truncated noise (see Simar and Wilson 2011, for sharp
critique of this assumption).
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Recall that CNLS regression estimates the conditional mean. Therefore, define
the conditional mean function g as12

g(xi) = E(yi |xi) = f (xi) − E(ui). (7.10)

If the random inefficiency term u is independent of inputs x, then the CNLS estimator
ĝCNLS(xi) is an unbiased and consistent estimator of function g. The CNLS estimator
ĝCNLS(xi) is obtained by solving the QP problem (7.3) and applying Eq. (7.4), as
already discussed in Sect. 7.3, so we do not reproduce the CNLS formulations again
here. Note that function g is simply the frontier production function f less the expected
value of the inefficiency term u. If the inefficiency term u has a constant variance
(i.e., inefficiency term u is homoscedastic), then the expected value of the inefficiency
term u is a constant, denoted as μ. In other words, the CNLS provides a consistent
estimator of the frontier f minus a constant. The constant μ can be estimated based
on the CNLS residuals ε̂CNLS

i , as discussed in more detail in Sect. 7.5.2. The case of
heteroscedastic inefficiency where E(ui) is no longer a constant will be examined in
Sect. 7.8.

Even if the data generating process (DGP) involves both inefficiency and noise,
the CNLS estimator may be sufficient in some applications, without a need to proceed
to the further stages. For example, if one is mainly interested in the relative efficiency
rankings, then one could rank the evaluated units in descending order according to the
CNLS residuals ε̂CNLS

i . Further, if one is mainly interested in the marginal products of
the input factors, the coefficients βi from (7.3), which are analogous to the multiplier
coefficients (shadow prices) of DEA, then the CNLS regression provides consistent
estimates (Seijo and Sen 2011). The following steps described below do not influence
the estimates of marginal products or the relative efficiency ranking of units. If one is
interested in the frontier production function, average (in)efficiency in the sample, or
cardinal firm-specific (in)efficiency estimates, then it is necessary to proceed further.

In the first step, one can impose some assumptions about returns to scale as
described in Sect. 7.4.1. In addition, alternative modeling possibilities concern the
multiplicative composite error and contextual variables are discussed as extensions
in Sects. 7.6 and 7.7.

7.5.2 Step 2: Estimation of the Expected Inefficiency

Given the CNLS residuals ε̂CNLS
i , it is possible to estimate the expected value of

the inefficiency term μ = E(ui). Note that if the variance of the inefficiency is
constant across firms (the homoscedasticity assumption), then the expectation is
taken unconditional and is constant across firms.

12 Note that we use g to denote the conditional mean function when the composite error term
contains inefficiency. This distinction was unnecessary in Sect. 7.3 because g(x)= f (x) when there
is no inefficiency present.
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Alternative approaches for estimating μ are available. We will next briefly review
the commonly used parametric approaches based on the method of moments (Aigner
et al. 1977), quasi-likelihood estimation (Fan et al. 1996), and the nonparametric
kernel deconvolution (Hall and Simar 2002).

7.5.2.1 Method of Moments

The method of moments requires some additional parametric distributional assump-
tions. The moment conditions are known at least for the commonly used half-normal
and exponential inefficiency distributions, but not for all distributions considered in
the SFA literature (e.g., the gamma distribution). In the following, we will discuss
the commonly assumed case of half-normal inefficiency and normal noise. Stated
formally, we assume

ui ∼ N+(0, σ 2
u )

and

vi ∼ N (0, σ 2
v )

The CNLS residuals are known to sum to zero
n∑
i=1
ε̂CNLS
i = 0 (Seijo and Sen 2011).

Hence, we can calculate the second and the third central moment of the residual
distribution as

M̂2 =
n∑

i=1

(ε̂CNLS
i )

2
/(n− 1) (7.11)

M̂3 =
n∑

i=1

(ε̂CNLS
i )

3
/(n− 1). (7.12)

The second central moment M̂2 is simply the sample variance of the residuals and the
third central moment M̂3 is a component of the skewness measure. The hats on top of
these statistics indicate these statistics are estimators of the true but unknown values
of the central moments. If the parametric assumptions of half-normal inefficiency
and normal noise hold, then the second and the third central moments are equal to

M2 =
[
π − 2

π

]
σ 2

u + σ 2
v (7.13)

M3 =
(√

2

π

)[
1 − 4

π

]
σ 3

u (7.14)

Note that the third moment only depends on the standard deviation of the inefficiency
distribution (σu). Thus, given the estimated M̂3 (which should be negative), we can
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estimate σu as

σ̂u =
3

√√√√√
M̂3(√

2
π

) [
1 − 4

π

] (7.15)

Subsequently, the standard deviation of the error term σv is estimated based on (7.12)
as

σ̂v =
√

M̂2 −
[
π − 2

π

]
σ̂ 2

u . (7.16)

There has been considerable discussion in the recent literature regarding the question
of how to proceed if M̂3 is positive. Carree (2002), Alminidis et al. (2009), and
Alminidis and Sickles (2012) consider alternative inefficiency distributions that allow
for positive skewness. Simar and Wilson (2010) maintain the standard distributional
assumptions, but suggest instead the use of bootstrapping method.

7.5.2.2 Quasi-likelihood Estimation

Another way to estimate the standard deviations σu, σv is to apply the quasi-likelihood
method suggested by Fan et al. (1996) (who refer to it as pseudo-likelihood). In this
approach we apply the standard maximum likelihood (ML) method to estimate the
parameters σu, σv, taking the shape of the CNLS curve as given (thus the term quasi-
likelihood, in contrast to the full information ML which would also parameterize the
coefficients of the frontier).

One of the main contributions of Fan et al. (1996) was to show that the quasi-
likelihood function can be stated as a function of a single parameter (i.e., the signal-
to-noise ratio λ = σu/σv)13 as,

lnL(λ) = −n ln σ̂ +
n∑

i=1

ln�

[−ε̂iλ
σ̂

]
− 1

2σ̂ 2

n∑

i=1

ε̂2
i , (7.17)

where

ε̂i = ε̂CNLS
i −

(√
2λσ̂

)/ [
π
(
1 + λ2

)]1/2
, (7.18)

σ̂ =
⎧
⎨

⎩
1

n

n∑

j=1

(ε̂CNLS
i )

2

/[
1 − 2λ2

π(1 + λ)
] ⎫
⎬

⎭

1/2

. (7.19)

13 The signal-to-noise ratio λ should not be confused with the intensity weights λi used in the
envelopment formulation of DEA.
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Symbol � denotes the cumulative distribution function of the standard normal dis-
tribution N(0,1). We first use (7.18) and (7.19) to substitute out ε̂i and σ̂ from (7.17).
We then maximize the quasi-likelihood function (7.17) by enumerating over λ val-
ues, using a simple grid search or more sophisticated search algorithms. When the
quasi-likelihood estimate λ̂ that maximizes (7.17) is found, we insert λ̂ to Eqs (7.18)
and (7.19) to obtain estimates of εi and σ . Subsequently, we can calculate estimates
of σ̂u = σ̂ λ̂/(1 + λ̂) and σ̂v = σ̂ /(1 + λ̂).

A simple practical trick to conduct quasi-likelihood estimation is to use ML algo-
rithms available for SFA in standard software packages (e.g., Stata, Limdep, or R).
By specifying the CNLS residuals ε̂CNLS

i as the dependent variable (i.e., the output)
and a constant term as an explanatory variable (input), we can trick the ML algorithm
to perform the quasilikelihood estimation. This trick can also be used for estimating
models involving contextual variables or heteroscedasticity (to be explored in Sects.
7.7 and 7.8) by applying standard ML techniques as a second step.

7.5.2.3 Nonparametric Kernel Density Estimation for the Convoluted
Residual

While both method of moments and quasilikelihood techniques require parametric
assumptions, a fully nonparametric alternative is available for estimating the signal-
to-noise ratio λ, as proposed by Hall and Simar (2002). Their strategy is to search for
a discontinuity in the residual density. The logic is that if an inefficiency term is left
truncated, to represent efficient performance, there must be a discontinuity in distri-
bution. When inefficiency is convoluted with noise, characterized by a continuous
and smooth function, the discontinuity will still exist in the convoluted variable’s
density, the estimated residuals density. Thus, Hall and Simar suggest estimating
the density of the residual using kernel methods and use these estimates to identify
the largest change in the derivative on the right-side of the distribution (in the case
of a production function and left-side in the case of the cost function). Then under
the assumption of homoscedastic noise and inefficiency, the location of the largest
change in the derivative can be used to estimate the mean inefficiency in the sample.

More formally, note that residuals ε̂CNLS
i are consistent estimators of ε+i = εi+μ.

Thus, we can apply the kernel density estimator for estimating the density function
of ε+i . Denote the kernel density estimator by fε+ . Hall and Simar (2002) show
that the first derivative of the density function of the composite error term (f ′ε) is
proportional to that of the inefficiency term (f ′u) in the neighborhood of μ. This is
due to the assumption that fu has a jump discontinuity at zero. Therefore, a robust
nonparametric estimator of expected inefficiency μ is obtained as

μ̂ = arg max
z∈ (f̂ ′ε+ (z)),

where  is a closed interval in the right tail of fε+ .
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7.5.3 Step 3: Estimating the Frontier Production Function

In the presence of asymmetric inefficiency, the CNLS estimator estimates the condi-
tional mean function g(xi) = f (xi)−μ. Having estimated the expected inefficiency
μ in Step 2, we can easily adjust the CNLS estimator to obtain an estimator of the
frontier f. However, recall from Sect. 7.3 that the CNLS estimator of g is unique at
the observed points xi (i= 1,. . . , n) but not in unobserved x. Therefore, Kuosmanen
and Kortelainen (2012) recommend applying the lower bound of g (analogous to Eq.
(7.5)), defined as

ĝCNLS
min (x) = min

α,β

{
α + β′x

∣∣α + β′xi ≥ ĝCNLS(xi) ∀i = 1, . . ., n
}
. (7.20)

We can subsequently add the expected inefficiency μ to estimate the frontier using

f̂ StoNED(x) = ĝCNLS
min (x) + μ̂.

This equation summarizes the relation between the StoNED frontier and the CNLS
estimator as well as the relation between the frontier function f and the conditional
mean function g. The heteroscedastic case where the shapes of the frontier f and the
regression E(yi |xi) are different will be discussed in Sect. 7.8 below.

7.5.4 Step 4: Estimating Firm-Specific Inefficiencies

Measuring the distance from an observation to frontier is not enough for estimating
efficiency in the stochastic setting because all observations are subject to noise. Hence
the measured distance to frontier consists of both inefficiency and noise (plus any
error in our frontier estimate).

We must emphasize that even though there exist statistically unbiased and con-
sistent methods for the estimation of the frontier f, there is no consistent method for
estimating firm-specific efficiencies u in the cross-sectional setting subject to noise.
In a cross-section, estimating firm-specific realizations of a random variable ui is im-
possible because we have only a single observation of each firm and all observations
are perturbed by noise. This is not a fault of the methods (let alone their developers),
it is just impossible to predict a realization of random variable based on a single
observation that is subject to noise.

In the normal—half-normal case, Jondrow et al. (1982) (JLMS) develop a for-
mula for the conditional distribution of inefficiency ui given εi . The commonly used
JLMS estimator for inefficiency is the conditional mean E(ui

∣∣εi). Given the pa-
rameter estimates σ̂u and σ̂v, the conditional expected value of inefficiency can be
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calculated as 14

E(ui
∣∣ε̂i) = σ̂uσ̂v√

σ̂ 2
u + σ̂ 2

v

⎡

⎢⎢⎣

φ

(
ε̂i σ̂u

σ̂v

√
σ̂ 2

u+σ̂ 2
v

)

1 −�
(

ε̂i σ̂u

σ̂v

√
σ̂ 2

u+σ̂ 2
v

) − ε̂i σ̂u

σ̂v

√
σ̂ 2

u + σ̂ 2
v

⎤

⎥⎥⎦, (7.21)

where φ is the density function of the standard normal distribution N(0,1), � is the
corresponding cumulative distribution function, and

ε̂i = ε̂CNLS
i − σ̂u

√
2/π

is the estimator of the composite error term (compare with (7.18)). It is worth to
note that there is nothing “stochastic” in the Eq. (7.21): the JLMS formula is a
simply a deterministic transformation of the CNLS residuals ε̂CNLS

i to a new metric
that represents the conditional expected value of the inefficiency term. Indeed, the
rank correlation of the CNLS residuals ε̂CNLS

i and the JLMS inefficiency estimates is
equal to one (see Ondrich and Ruggiero 2001). For the purposes of relative efficiency
rankings, the CNLS residuals ε̂CNLS

i are sufficient.
Horrace and Parmeter (2011) show that the parametric assumption of the inef-

ficiency distribution can be relaxed. Their approach still requires the parametric
assumption of normally distributed noise. Rather than assuming a specific paramet-
ric distribution for the inefficiency term, the authors assume the density of u belongs
to the ordinary smooth family of distributions, which includes exponential, gamma
or Laplace (see also Fan 1991). They apply Hall and Simar’s (2002) method to es-
timate the jump discontinuity and thus the signal to noise ratio. Given the mean
inefficiency level the authors are then able to construct the full density distribution
of the inefficiency term using kernel smoothing and the residuals from a conditional
mean estimation.

7.5.5 Statistical Specification Tests of the Frontier Model

As discussed above, the StoNED estimator consists of four steps. If all firms are
efficient and deviations from the frontier are due to noise, the step 1 of estimating
the conditional mean function is sufficient, and there is no reason to proceed further
to step 2 of estimating the mean inefficiency to step 3 shifting the conditional mean
function or step 4 estimating firm specific inefficiencies. To determine whether one
should proceed from step 1 further to step 2, the efficiency analyst may want to
test the data for evidence of inefficiency. If the results of a statistical specification
test indicate that there is significant inefficiency present, this can be a convincing
argument even for skeptics who believe that markets function efficiently.

14 Note that Eq. (7.21) corrects the errors noted in formulations stated by Kuosmanen and
Kortelainen (2012) and Keshvari and Kuosmanen (2013).
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The residual ε̂CNLS
i consists of two components, a normally distributed noise term

and a left-truncated inefficiency term. Schmidt and Lin (1984) propose a test of
the skewness of the residuals as a method to investigate if inefficiency is present.
By only looking at the skewness, the method is robust to the common alternative
specifications of the inefficiency term in the stochastic frontier model. Thus, the null
hypothesis is the residuals are normally distributed and a

√
b1 test calculated as

√
b1 = M3

(M2)3/2
(7.22)

Where M2 and M3 are, the second and third moments of the residuals respectively.
The distribution of the skewness test statistic,

√
b1 can be constructed by a simple

Monte Carlo simulation as described in D’Agostino and Pearson (1973). The authors
also provide tables with critical values of the proposed test statistic for different
sample sizes.

Kuosmanen and Fosgerau (2009) consider a fully nonparametric specification test
that relaxes the normality assumption of the noise term. They show that the same test
statistic

√
b1 considered by Schmidt and Lin (1984) can be used for testing the null

hypothesis of a symmetric v against the alternative hypothesis of skewness. They
also recognize the

√
b1 can wrongly reject the null hypothesis if the distribution is

symmetric but has fat tails. Thus, they propose the additional b2 test of the fourth
moment

b2 = M4

(M2)2 (7.23)

WhereM2 andM4 are the second and fourth moments of the residuals respectively.
The null hypothesis is that the distribution is normally distributed. The alternative
hypothesis is that there is non-normal kurtosis. The results of the

√
b1 and b2 tests

can be given the following interpretation:

• If the null hypothesis of normality is rejected in the
√
b1 test but maintained in

the b2 test, there is strong evidence in favor of a frontier model.
• If the null hypothesis of normality is maintained both in the

√
b1 and b2 tests, this

supports the hypothesis of a competitive market with no inefficiency present.
• If the null hypothesis is rejected in the b2 test, there may be data problems or

model misspecification. There is no conclusive evidence in favor or against the
frontier model.

It is worth noting that the power of the test depends on how specifically the null
hypothesis and the alternative hypothesis are stated. For example, the

√
b1 test of

normality is more powerful than the fully nonparametric test of symmetry. If we are
willing to impose some distributional assumptions for the inefficiency term, then
more powerful specification tests are available. For example, Coelli (1995) proposed
a variant of the Wald test to test the null hypothesis that there is no inefficiency, i.e.
σ 2

u = 0, against the alternative σ 2
u > 0. While imposing distributional assumptions

can increase the power of the test, it will also increase the risk of misspecification,
which would make the statistical test inconsistent.
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7.6 Extensions

7.6.1 Multiplicative Composite Error Term

Most SFA studies use Cobb-Douglas or translog functional forms where inefficiency
and noise affect production in a multiplicative fashion. In the present context, it is
worth noting that the assumption of constant returns to scale (CRS) would also require
multiplicative error structure, as will be discussed in more detail below. Further, a
multiplicative error specification implies a specific model of heteroscedasticity in
which the variance of the composite error term increases with firm size.

Multiplicative composite error structure is obtained by rephrasing model (7.1) as

yi = f (xi) · exp (εi) = f (xi) · exp (vi − ui) (7.24)

Applying the log-transformation to Eq. (7.23), we obtain

ln yi = ln f (xi) + εi . (7.25)

Note that the log-transformation cannot be applied directly to inputs x—it must be
applied to the production function f.

In the multiplicative case, the CNLS formulation (7.3) can be rephrased as

min
α,β,φ,ε

n∑

i=1

(εCNLS
i )2

subject to

ln yi = ln (φi + 1) + εCNLS
i ∀i

φi + 1 = αi + β′ixi ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i (7.26)

where φi + 1 is the CNLS estimator of E(yi |xi). The value of one is added here to
make sure that the computational algorithms do not try to take logarithm of zero. The
first equality can be interpreted as the log transformed regression equation (using the
natural logarithm function ln(.)). The second through fifth constraints are similar to
(7.3) with the exception observed output in (7.3) is replaced with φi + 1. The use
of φi allows the estimation of a multiplicative relationship between output and input
while assuring convexity of the production possibility set in original input-output
space.15

15 If we apply the log transformation directly to input data, the resulting frontier would be a piece-
wise log-linear frontier, which has been considered in the DEA literature by Charnes et al. (1982) and
Banker and Maindiratta (1986). Unfortunately, the piece-wise log-linear frontier does not generally
satisfy the concavity of f.
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Note that the log-transformation of a model variable renders the optimization for-
mulation as a nonlinear programming (NLP) problem. These constraints are shown
separately to illustrate the connection to previous formulations, but the first equality
constraint can be moved to the objective function by solving and substituting for
ε̂CNLS
i . Thus we have a convex solution space and a nonlinear objective function.

This formulation can be solved by standard nonlinear programming algorithms and
solvers. NLP solvers are available for example in such mathematical programming
packages as GAMS, AIMMS, Matlab, and Lindo, among others.

In the multiplicative case, the CNLS estimator (7.25) can be applied, or as the
first step of the C2NLS or StoNED estimation routine. The standard method of
moment, quasi-likelihood and kernel deconvolution techniques apply, as described
in Sect. 7.5. However, note that in step 3 the frontier production function is obtained
as f̂ StoNED(xi)ĝCNLS

min (x) ·exp(μ̂), where ĝCNLS
min (x) is the minimum function computed

using Eq. (19.5) and exp(μ̂) is the estimated average efficiency. A convenient feature
of the multiplicative model is that exp(ui) can be interpreted as the Farrell output
efficiency measure.

7.6.2 Panel Data

In panel data the sample of firms is observed repeatedly over multiple time periods.
Panel data applications are common in the SFA literature and a number of alternative
SFA models involving time invariant and time varying inefficiency are available (see,
e.g., Greene 2008, Sect. 7.2.7). In contrast, DEA studies ignore the time dimension
of the panel data and either pool the panel together as a single cross section or treat
each time period as an independent cross section.16

The regression interpretation of DEA examined in Sect. 7.4.1 allows us to combine
DEA-style axiomatic frontier with the modern panel data methods from economet-
rics. Kuosmanen and Kortelainen (2012, Sect. 4.1) were the first consider a fixed
effects approach to estimating a time invariant inefficiency model. Their fully non-
parametric panel data StoNED estimator can be seen as a nonparametric counterpart
to the classic SFA approach by Schmidt and Sickles (1984). In the following we
consider the random effects approach, building upon Eskelinen and Kuosmanen
(2013).

Consider a data set where each firm is observed over time periods t = 1, . . ., T
and define a time invariant frontier model

yit = f (xit ) − ui + vit ∀i = 1, . . ., n ∀t = 1, . . ., T , (7.27)

where yit is the observed output of firm i in time period t, xit is a vector of inputs
consumed by firm i in time period t, and f is a frontier production function that is
time invariant and common to all firms. As before, ui is a firm specific inefficiency
term that does not change over time, and vit is a random disturbance term of firm

16 One notable exception is Ruggiero (2004).
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i in period t. Similar to the cross-sectional model, we assume that ui and vit are
independent of inputs xit and of each other.17

To estimate the model (7.27), we can adapt the standard CNLS estimator as

min
α,β,ε

T∑

t=1

n∑

i=1

(εCNLS
it )

2

subject to

yit = αit + β′itxit + εCNLS
it ∀i = 1, . . ., n ∀t = 1, . . ., T

αit + β′itxit ≤ αit + β′itxhs ∀h, i = 1, . . ., n ∀s, t = 1, . . ., T

βit ≥ 0 ∀i = 1, . . ., n ∀t = 1, . . ., T (7.28)

where ε̂CNLS
it is the CNLS residual of firm i in period t. Note the parameters αit and βit

that define the tangent hyperplanes of the estimated production function are specific
to each firm in each time period. Thus, a piece-wise linear frontier is estimated with
as many as nT hyperplanes.

Given the optimal solution to (7.28), we compute the firm-specific effects as

ε̄CNLS
i = 1

T

T∑

t=1

ε̂CNLS
it (7.29)

Following Schmidt and Sickles (1984) we measure efficiency relative to the most effi-
cient firm in the sample (analogous to the C2NLS approach considered in Sect. 7.4.2)
and define

ûStoNEDi =
(

max
h∈{1,...,n}

ε̄CNLS
h

)
− ε̄CNLS

i . (7.30)

To estimate theconditional mean function, we can adapt Eq. (7.20) to panel data as

ĝCNLS
min (x) = min

α,β

{
α + β′x

∣∣α + β′xit ≥ ĝCNLS(xit ) ∀i = 1, . . ., n; ∀t = 1, . . ., T
}
.

The StoNED frontier estimator is then obtained as

f̂ StoNED(x) = ĝCNLS
min (x) +

(
max

h∈{1,...,n}
ε̄CNLS
h

)
.

Both the frontier and inefficiency estimators can be shown to be statistically
consistent under the assumptions stated above.

Note that the panel data StoNED estimator described above is fully nonpara-
metric in the sense that no parametric functional form or distributional assumptions

17 The random effects approach to panel data requires that the time invariant inefficiency is un-
correlated with inputs. This is a strong assumption. Marschak and Andrews (1944) were among
the first to note that rational firm manager will adjust the inputs to take into account the technical
inefficiency, and hence the observed inputs are correlated with inefficiency. In that case, the random
effects estimator is biased and inconsistent. The fixed effects estimator considered by Kuosmanen
and Kortelainen (2012) does not depend on this assumption.
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are required. Still, the model described in Eq. (7.27) relies on two strong assump-
tions: (i) there is no technical progress, and (ii) inefficiency is constant over time.
It is possible to relax these assumptions, but this will require some additional as-
sumptions (typically imposing some parametric structure). Note that random effects
estimator considered above may still be useful even if inefficiency changes over
time. In that case, the inefficiency estimator can be interpreted as the average
efficiency during the time period under study. Eskelinen and Kuosmanen (2013)
propose to examine the development trajectories of the normalized CNLS residuals
ε̂CNLS
it /(maxh∈{1,...,n}ε̄CNLS

h ) to gain a better understanding how the firm performance
has developed during the study period. While the normalized CNLS residuals con-
tain random noise, a growth trend (or decline) provides a clear indication that the
performance of the firm has improved (or deteriorated) during the study period.

Based on the previous discussion, two insights are worth noting:

1. Panel data is not a panacea: while we recognize that panel data provides a richer set
of information, we must also acknowledge that the intertemporal setting involves
complex dynamics such as technological progress and changes in efficiency over
time. The random effects approach to panel data considered above would be
ideal for modeling experimental data where the researcher can control the input
levels and keep the production technology the same across repeated experiments.
However, most panel data applications of stochastic frontiers use observational
data where both the production function and the level of efficiency will likely
change over time.

2. Resorting to a fully nonparametric approach does not imply freedom from re-
strictive assumptions. In fact, avoidance of parametric assumptions often comes
at the cost of very restrictive assumptions of no noise, no technical progress, or
time invariant inefficiency. Indeed, insisting on a fully nonparametric approach
can be more restrictive than resorting to some parametric assumptions that allow
for explicit modeling of noise, technical progress, or time varying inefficiency.

7.6.3 Multiple Outputs (DDF Formulation)

The ability to model multiple inputs and multiple outputs has long been touted as an
advantage of DEA over SFA: several DEA papers erroneously state that SFA cannot
deal with multiple outputs. Lovell et al. (1994) and Coelli and Perelman (1999, 2000)
were the first to consider a stochastic distance function model that characterizes a
general multiple inputs and multiple outputs technology using the radial input and
output distance functions. The recent paper by Kuosmanen et al. (2013) (henceforth
KJP) examines the assumptions of the data generation process that need to be satisfied
for econometric identification of the distance function when the data are subject to
random noise. Although the econometric estimation of distance functions is feasible,
the well-established drawbacks of SFA still apply: a functional form needs to be
specified for the distance function and parametric assumptions are typically made
to decompose the residual into inefficiency and noise. Further, the commonly used
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parametric functional forms have the wrong curvature in output space, which is a
serious problem for modeling joint production of multiple outputs.18

Up to this point, the CNLS/StoNED framework has been presented in the single
output, multiple input setting. In this section we describe the CNLS estimator within
the directional distance function (DDF) framework, Chambers et al. (1996, 1998).
The CNLS formulation satisfies the axiomatic properties of the DDF by construction,
models multiple inputs and multiple outputs, and accounts for stochastic noise ex-
plicitly, addressing the key limitations of both DEA and the parametric approaches.
In the following we will briefly describe the stochastic data generating process (DGP)
and the estimation of the DDF by CNLS. See KJP for a more detailed discussion.

The DDF indicates the distance from a given input-output vector to the boundary
of the production possibility set T in some pre-assigned direction (gx , gy) ∈ �m+s+ ,
formally,

−→
DT (x, y, gx , gy) = sup

θ

{
θ
∣∣(x − θgx , y + θgy) ∈ T }

. (7.31)

Denote the reference input-output vector of firm i in the direction (gx , gy) by (x∗i , y∗i ).
In this section we do not impose any particular behavioral hypothesis, but it may be
illustrative to interpret (x∗i , y∗i ) as the optimal solution to firm i’s profit maximization
problem. Regardless of the firm manager’s objective, we assume (x∗i , y∗i ) lies on the
boundary of the production possibility set T and hence the values of the DDF satisfy

−→
DT (x∗i , y∗i , gx , gy) = 0 ∀i = 1, . . ., n (7.32)

The observed input-output vectors (xi , yi), i = 1, ..., n, are perturbed in direction
(gx , gy) ∈ �m+s+ by random inefficiency ui and noise vi , which form the composite
error term εi = ui+vi (note the positive sign of the inefficiency term ui). Specifically,
the observed data are perturbed versions of the optimal input-output vectors as follows

(xi , yi) = (x∗i + εigx , y∗i − εigy) ∀i = 1, . . ., n (7.33)

We assume the inefficiency and noise terms satisfy the assumptions discussed in
Sect. 7.2. Note that the elements of the direction vector (gx , gy) represent the impacts
of inefficiency and noise on specific input and output variables. If an element of
(gx , gy) is equal to zero, it means that the corresponding input or output variable
is immune to both inefficiency and noise in the DGP. The larger the value of an
element of (gx , gy) in the DGP, the larger the impact of inefficiency and noise on the
corresponding input or output variable is. Interestingly, Proposition 3 in KJP shows

18 The wrong curvature violates some of the most elementary properties of production technologies.
For example, the Cobb-Douglas or translog specifications of the distance function will violates
the basic properties of null jointness and unboundedness (see, e.g., Färe et al. 2005). Another
problem concerns the economies of scope (e.g., Panzar and Willig 1981). For example, the Cobb-
Douglas distance function cannot capture the economies of scope at any parameter values. Since
the economic rationale for joint production is rooted to economies of scope, it is contradictory to
apply a technology that exhibits economies of specialization for modeling joint production.
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that in the DGP described above the value of the DDF equals the composite error
term:

−→
DT (xi , yi , gx , gy) = εi ∀i.

This result provides implicitly a regression equation for estimating the DDF. We can
resort to a similar stepwise procedure as described in Sect. 7.5.

The first step is to estimate the conditional mean distance defined as

d(xi , yi , gx , gy) = −→
D(xi , yi , gx , gy) − μ (7.34)

Let � denote the set of functions that satisfy the axioms of free disposability, con-
vexity, and the translation property.19 We can adapt the CNLS estimator to the DDF
setting by postulating the following infinite dimensional least squares problem

min
d

n∑

i=1

d(xi , yi , gx , gy)2

subject to

d ∈ � (7.35)

Formulation (7.35) is a complex, infinite dimensional optimization problem that
cannot be solved by brute-force numerical methods. The main challenge is to find a
way to parameterize the infinitely large set of functions that satisfy the stated regu-
larity conditions. Here again we apply insights from Kuosmanen (2008) and show
an equivalent finite dimensional representation in terms of quadratic programming.
Consider the following QP problem

min
α,β,γ,ε

n∑

i=1

(εCNLS
i )

2

subject to

γ′iyi = αi + β′ixi − εCNLS
i ∀i = 1, . . ., n

αi + β′ixi − γ′iy ≤ αh + β′ixi − γ′hyi ∀h, i = 1, . . ., n

γ′i ig
y + β′i ig

x = 1 ∀i = 1, . . ., n

βi ≥ 0 ∀i = 1, . . ., n

γi ≥ 0 ∀i = 1, . . ., n (7.36)

Note that the residual ε̂CNLS
i here represents the estimated value of di(i.e.,−→

D (xi , yi , gx , gy)+ ui). We also introduce new firm-specific coefficients γγi that rep-
resent marginal effects of outputs to the DDF. The first constraint defines the distance

19 The translation property, Chambers et al. (1998), states that if we move from the initial point
(x, y) in the direction (gx , gy ) by factor α, i.e., to the point (x+ αgx , y− αgy ), then the distance to
the frontier decreases by α. This property is crucial for the internal consistency of the DDF and can
be seen as an additive analogue of the linear homogeneity property of the input distance function.
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to the frontier as a linear function of inputs and outputs. The linear approximation
of the frontier is based on the tangent hyperplanes, analogous to the original CNLS
formulation. The second set of constraints is the system of Afriat inequalities that
impose global concavity. The third constraint is a normalization constraint that en-
sures the translation property. The last two constraints impose monotonicity in all
inputs and outputs. It is straightforward to show that the CNLS estimator of function
d satisfies the axioms of free disposability, convexity, and the translation property
(see Theorem 3 in KJP).

After solving the CNLS problem, one can proceed to estimate the deterministic
frontier by Corrected CNLS as described in Sect. 7.4.2 or the stochastic frontier
by StoNED as described in Sect. 7.5.2. Note that the CNLS estimator described
above does not estimate the DDF directly, but rather

−→
D (xi , yi , gx , gy) + E(ui). If

the inefficiency term is homoscedastic, then the techniques described in Sect. 7.5.2
apply for the estimation of E(ui) = μ. The case of heteroskedastic inefficiency term
is discussed in Sects. 7.8.2 and 7.8.3 below. Subsequently, the estimate of the DDF
is obtained by shifting the CNLS estimate of function d in direction (gx , gy) by the
estimated expected inefficiency.

To connect the multi-output DDF to the single output case, it is worth noting in the
single output case, specifying the direction vector as gy = 1 and gx = 0, the CNLS
problem (7.36) reduces to

min
α,β,ε

n∑

i=1

(εCNLS
i )

2

subject to

yi = αi + β′ixi − εCNLS
i ∀i = 1, . . ., n

αi + β′ixi ≤ αh + β′hxi ∀h, i = 1, . . ., n

βi ≥ 0 ∀i = 1, . . ., n (7.37)

This formulation is equivalent to the CNLS formulation (7.3) developed in Kuos-
manen (2008), except for the sign of the residual ε̂CNLS

i in the first constraint. Note
that the DDF has positive values below the frontier and negative values above the
frontier, which explains the negative sign.

7.6.4 Convex Nonparametric Quantile Regression and
Asymmetric Least Squares

While CNLS estimates the conditional meanE(yi |xi), quantile regression aims at es-
timating the conditional median or other quantiles of the response variable (Koenker
and Bassett 1978; Koenker 2005).20 Denoting the pre-assigned quantile by parameter

20 In the DEA literature, the quantile frontiers are commonly referred to as robust order-m and order-
α frontiers (e.g., Aragon et al. 2005; Daouia and Simar 2007). However, while quantile frontiers are

timo.kuosmanen@aalto.fi



7 Stochastic Nonparametric Approach to Efficiency Analysis. . . 221

q ∈ (0,1), we can modify the CNLS problem (7.3) to estimate convex nonparametric
quantile regression (CNQR) (Wang et al. 2014) as follows:21

min
α,β,ε+,ε−

q

n∑

i=1

ε+i + (1 − q)
n∑

i=1

ε−i

subject to

yi = αi + β′ixi + ε+i − ε−i ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
ε+i ≥ 0 ∀i
ε−i ≥ 0 ∀i (7.38)

The CNQR problem differs from CNLS in that the composite error term is now
broken down to two non-negative components ε+i , ε−i ≥ 0. The objective function
minimizes the asymmetric absolute deviations from the frontier instead of symmetric
quadratic deviations. The pre-assigned weight q defines the quantile to be estimated.
For example, by setting q= 0.05, the piece-wise linear CNQR function will allow
at most 5 % of observations to lie above the fitted function and envelope at most
95 % of the observed data points. As the sample size approaches to infinity, the q-
order frontier will envelop exactly q percent of the observed data points (Wang et al.
2014, Theorem 1). Two important special cases are worth noting. First, if we set
q= 0.5, then CNQR estimates the conditional median (whereas CNLS estimates the
conditional mean). Secondly, as q approaches to zero, the negative deviations ε−i get
a larger weight, and the CNQR approaches to the DEA frontier.

An appealing feature of the CNQR formulation is that its objective function and
all constraints are linear functions of unknown parameters, and hence the CNQR
problem can be solved by standard linear programming (LP) algorithms. However, a
major drawback compared to CNLS is that the optimal solution to the CNQR problem
is not necessarily unique, not even for the observed data points (xi , yi), i = 1, . . ., n.
In econometrics, non-uniqueness of quantile regression is usually assumed away
by assuming the regressors x are randomly drawn from a continuous distribution.
In practice, however, input vectors x are not randomly drawn, and there may be
two or more firms use exactly the same amounts of inputs (i.e., xi = xj for firms
i and j). In our experience, non-uniqueness of CNQR seems to be particularly a prob-
lem in samples where inputs x are discrete variables. Wang et al. (2014) recognize
non-uniqueness of the CNQR estimator, illustrating the problem with a numerical
example.

One possible way to resolve the non-uniqueness problem is to apply the asymmet-
ric least squares criterion suggested by Newey and Powell (1987), and reformulate

more robust to outliers than the conventional DEA frontiers, the quantile DEA approaches typically
assume away noise.
21 Similar quantile formulation was first considered by Banker et al. (1991), who refer to it as
“stochastic DEA”.
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the CNQR problem as

min
α,β,ε+,ε−

q

n∑

i=1

(ε+i )
2 + (1 − q)

n∑

i=1

(ε−i )
2

subject to

yi = αi + β′ixi + ε+i − ε−i ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
ε+i ≥ 0 ∀i
ε−i ≥ 0∀i (7.39)

To our knowledge, this asymmetric least squares formulation has not been considered
before; we will henceforth refer to it as convex asymmetrically weighted least squares
(CAWLS). The CAWLS problem differs from CNQR only in terms of the objective
function, which now minimizes the asymmetric squared deviation instead of the
absolute deviations. In the case of the linear regression, Newey and Powell (1987)
show that the properties of the asymmetric least squares estimator are analogous
to those of the quantile regression, but the asymmetric least squares can be more
convenient for statistical inferences. In the present context, we hypothesize that the
use of the quadratic loss function similar to CNLS ensures that the optimal solution
to the CAWLS problem is always unique for the observed data points (xi , yi), i =
1, . . ., n. We leave confirming or rejecting this hypothesis as an open question for
future research. Besides the question of uniqueness, the statistical properties of both
CNQR and CAWLS would require further research.

CNQR and CAWLS formulations allow one to estimate the q-quantile or q-
expectile frontiers directly, without a need to impose parametric distributional
assumptions for the inefficiency and noise terms or resort to stepwise estimation
along the lines described in Sect. 7.5. This is one of the attractive properties of CNQR
and CAWLS. For the purposes of efficiency analysis, however, the use of quantiles
or asymmetric weighted least squares is not a panacea. It is important to stress that
the distance from the frontier, measured as ε̂CNQRi = ε̂+i − ε̂−i or ε̂CAWLSi = ε̂+i − ε̂−i
(note: in both cases the residuals satisfy ε̂+i ε̂

−
i = 0 ∀i), should not be interpreted as

a measure of inefficiency, as the distance to frontier also includes noise. To estimate
conditional expected value of inefficiency along the lines of JLMS, we still need
to resort to stepwise estimation. One possibility is to replace CNLS by CNQR or
CAWLS as the first step of the StoNED procedure outlined in Sect. 7.5. Of course,
residuals ε̂CNQRi or ε̂CAWLSi can be used as such for relative performance rankings,
but such performance rankings obviously depend on the chosen parameter value of
q. Wang et al. (2014) examine the specification of q for frontier estimation, showing
that the optimal value of q is a monotonically decreasing function of the signal to
noise ratio λ = σu/σv. One may set the value of q based on subjective judgment,
but in real world applications (consider, e.g., regulation of electricity distribution
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networks; see Kuosmanen 2012; Kuosmanen et al. 2013), some objective criteria for
specifying q would be important.

One appealing feature of the q-quantile and q-expectile frontiers is that they are
robust to heteroscedasticity. Therefore, testing of and dealing with heteroscedasticity
provide one promising application area for the CNQR and CAWLS techniques. If
the composite error term is homoscedastic, then the quantile and expectile frontiers
should have similar shapes at different values of q. Newey and Powell (1987) apply
this idea for testing heteroscedasticity. We return to this issue in more detail in
Sect. 7.8.

7.7 Contextual Variables

A firm’s ability to operate efficiently often depends on operational conditions and
practices, such as the production environment and the firm specific characteristics
for example technology selection or managerial practices. Banker and Natarajan
(2008) refer to both variables that characterize operational conditions and practices
as contextual variables. Currently two-stage DEA (2-DEA) is widely applied to
investigate the importance of contextual variables as summarized by the citations
included in Simar and Wilson (2007). However, its statistical foundation has been
subject to sharp debate between Simar and Wilson (2007, 2011) and Banker and
Natarajan (2008) (see also Hoff 2007; McDonald 2009). In this section we shed
some new light on this debate following Johnson and Kuosmanen (2011, 2012).

It is important to note that Simar and Wilson (2007, 2011) do not consider stochas-
tic noise in their DGP. In contrast, Banker and Natarajan (2008) introduce a noise term
that has a doubly-truncated distribution, following the DEA+ approach by Gstach
(1998). In this setting, Johnson and Kuosmanen (2012) show that the 2-DEA esti-
mator of contextual variables is consistent under more general assumption that those
stated by Banker and Natarajan (2008) and criticized by Simar and Wilson (2011).
Further, Johnson and Kuosmanen (2012) employ the least squares formulation of
DEA to develop a one-stage DEA method (1-DEA) for estimating the effects of the
contextual variables. Relaxing the peculiar assumption of truncated noise,22 John-
son and Kuosmanen (2011) develop stochastic (semi-) nonparametric envelopment
of z-variables data (StoNEZD).

22 We label this assumption as peculiar because it contradicts standard statistical assumptions,
namely, the residual term is often model as normally distributed because a mixture of a large
number of unknown distributions is approximately normal in finite samples and asymptotically
normal. The large number of unknown distributions is a result of measurement errors, modeling
simplifications, and other sources of noise. Thus, the motivation for truncated normal distribution
used in Gstach (1998) and Banker and Natarajan (2008) is lacking and peculiar as also noted by
Simar and Wilson (2011). Johnson and Kuosmanen (2012) argue this truncation may come from an
outlier detection procedure that would remove extreme observations from the analysis. However, in
this case 1-DEA (introduced below) would still be preferred to 2-DEA because the bias introduced
in two-stage estimation.
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Taking the multiplicative model described in Sect. 7.6.1 as our starting point,
we introduce the contextual variables, represented by r-dimensional vectors zi that
represent the measured values of operational conditions and practices, to obtain the
following semi-nonparametric, partial log-linear equation

ln yi = ln f (xi) + δ′zi + vi − ui . (7.40)

In this equation, parameter vector δ = (δ1 . . . δr )′ represents the marginal effects of
contextual variables on output. All other variables maintain their previous definitions.

In the following sub-sections we will present two-stage DEA (2-DEA), one-stage
DEA, and StoNEZD estimators. First, the 2-DEA estimator is described and the
statistical properties of it are discussed. Given the assumptions necessary for the
consistency of two-stage DEA method we then present the one-stage alternative.
The joint estimation avoids the bias in the DEA frontier being transmitted to the pa-
rameter estimates of the coefficients on the contextual variables; however, the frontier
estimated is still the minimum envelopment of the data and thus does not account for
noise in the production model or input/output data. To account for stochastic noise,
StoNEZD is introduced in 7.3.

7.7.1 Two-Stage DEA

The literature on 2-DEA includes a number of variants. This sub-section follows the
approach by Banker and Natarajan (2008). The two stages of their 2-DEA method
are the following. In the first stage, the frontier production function f is estimated
using the nonparametric DEA estimator formally stated as (7.5). The DEA output
efficiency estimator of firm i is stated as θ̂DEA

i = yi/f̂ DEA(xi) and computed as

(θ̂DEA
i )

−1 = max
θ∈�,λ∈�n+

{
θ

∣∣∣θyi ≤
∑n

h=1
λhyh; xi ≥

∑n

h=1
λhxh;

∑n

h=1
λh = 1

}

(7.41)

In the second stage, the following linear equation is estimated using OLS or ML

ln θ̂DEA
i = α + δ′zi + ε2−DEA

i , i = 1, . . ., n, (7.42)

where the intercept α captures the expected inefficiency and the finite sample bias of
the DEA estimator, and the composite disturbance term ε2−DEA

i captures the noise
term vi and the deviations of ui from the expected inefficiency μ. Note that the
dependent variable has the “hat” because the DEA efficiency estimate is computed
beforehand using (7.41), whereas the parameters on the right hand side of (7.42) are
estimated using OLS or ML in a second stage.

Johnson and Kuosmanen (2012) state that the 2-DEA estimator is statistically
consistent in the case of truncated noise as shown by Banker and Natarajan (2008),
however, the assumptions required for consistency in Banker and Natarajan are
unnecessarily restrictive.
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Let Z denote a n× r matrix of contextual variables. Assume the noise terms are
truncated as |vi | ≤ VM and denote v = (v1, ..., vn)′. Denote the domains of vectors
x and z by Dx and Dz, respectively. Then the statistical consistency of the 2-DEA
estimator can be established under the relaxed set of assumptions as follows.

Theorem 7 If the following five assumptions are satisfied

(i) sequence {(yi , xi , zi), i= 1, . . ., n} is a random sample of independent
observations,
(ii) lim

n→∞Z′Z/n is a positive definite matrix,

(iii) noise term v has a truncated distribution: |v| ≤ VM1, fv(VM ) > 0,
(iv) elements of domain Dz are bounded from above or below such that δ′z has a
finite maximum ζ = max

z∈Dz
δ′z at a point zξ ∈ arg max

z∈Dz
δ′z,

(v) the joint density f is continuous and satisfiesf (x, zξ , 0,VM ) > 0 for all x ∈ Dx ,
then the 2-DEA estimators are statistically consistent in the following sense

plim
n→∞

f̂ DEA(xi) = f (xi) · exp (VM + ζ ) f or all i = 1, . . ., n,

plim
n→∞

δ2-DEA = δ

Proof. See Johnson and Kuosmanen (2012), Theorem 1.
This theorem by Johnson and Kuosmanen (2012) generalizes the consistency

result by Banker and Natarajan (2008) result by relaxing the following two
assumptions:

1. inputs and contextual variables are statistically independent,
2. the effect of contextual variables is one-sided: Z ≥ 0, δ ≤ 0.

Note that the DEA frontier does not converge to the true frontier f, it converges to
f (x)·exp (VM+ζ ) (i.e., the frontier augmented by the maximum noise VM under the
ideal conditions represented by zζ ) thus estimation of the frontier requires observing
firms that are operating efficiently and are operating in the best environment and
happen to get a noise drawn close to the upper bound VM .

Consistency is a relatively weak property. In practice a data set will be finite in
size and probably not as large as we would like. However, Johnson and Kuosmanen
(2012) are able to provide the explicit form of the bias in the 2-DEA estimator.
Specifically it depends on the bias of the DEA frontier (f̂ DEA) as follows:

Bias(δ̂
2-DEA

) = −(Z′Z)−1Z′
[
Bias(f̂ DEA(X))

]
, (7.43)

where

Bias(f̂ DEA(X)) =

⎛

⎜⎜⎜⎝

E( ln f̂ DEA(x1)) − f (x1) · exp (VM + ζ )
...

E( ln f̂ DEA(xn)) − ln f (xn) · exp (VM + ζ )

⎞

⎟⎟⎟⎠. (7.44)
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Thus, the bias of the first-stage DEA estimator carries over to the second-stage OLS
regression. Importantly, the bias of the second-stage OLS estimator is due to the
correlation of Z and bias of the first-stage DEA estimator.

In summary we would like to emphasize two critical points about 2-DEA.

1. correlation of inputs and contextual variables does not influence the statistical
consistency of 2-DEA estimator as long as the columns of X and Z matrices are
not linearly dependent.

2. the bias of the DEA frontier in the first-stage carries over to the second-stage
OLS estimator through the correlation of the DEA frontier with the contextual
variables.

We note that statistical independence of inputs and contextual variables does not
necessarily guarantee that Bias(f̂ DEA(X)) is uncorrelated with Z. Thus, 2-DEA does
not suffer from some of the problems noted by Simar and Wilson (2011) and in
fact requires significantly weaker assumptions than Banker and Natarajan (2008)
suggest. However, the DEA frontier is always biased downward in a finite sample
and thus this bias may be transferred to the estimation of the effect of the contex-
tual variables. The following two sub-sections propose alternatives building on the
regression interpretation of DEA which do not suffer from this bias.

7.7.2 One-Stage DEA

The fundamental problem of the 2-DEA procedure is that the impact of the con-
textual variables Z is not taken into account in the first stage DEA. This problem
has been recognized in the SFA literature, where the standard approach is to jointly
estimate the frontier and the impacts of the contextual variables (e.g., Wang and
Schmidt 2002). In the similar vein, the least squares regression interpretation of
DEA described in Sect. 7.4.1 allows us to estimate the DEA frontier and the coef-
ficients δ jointly. Specifically, we can introduce the contextual variables to the least
squares formulation of DEA, stated as the QP problem (7.6), to obtain:

min
α,β,δ,φ,ε

n∑

i=1

(ε1−DEA
i )

2

subject to

ln yi = ln (φi + 1) + δ′zi + ε1−DEA
i ∀i

φi + 1 = αi + β′ixi ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
ε1−DEA
i ≤ VM ∀i (7.45)

Notable differences compared to the problem (7.7) concern the use of the log-
transformation to enforce the multiplicative formulation of the inefficiency term
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(compare with Sect. 7.6.1) and the truncation of the residual ε1−DEA
i at point VM .

Note that by setting VM = 0 restricts the noise term to zero, and the 1-DEA formu-
lation reduces to the joint estimation of the effect of the contextual variables and the
classic deterministic DEA frontier where all input/output data is observed exactly
and residuals are non-positive.

Note further that the parameter vector δ is common to all observations, and hence
it can be harmlessly omitted from the Afriat inequalities that impose convexity. In
fact, the contextual variables can be interpreted as inputs that have constant marginal
products across all firms23 (i.e., we can think of matrix Z as a subset of X for which
βi = βj ∀i, j ).

The statistical properties of the 1-DEA estimator generally depend on the speci-
fication of the truncation point VM . Performance of the 1-DEA estimator has been
investigated via Monte Carlo simulations in Johnson and Kuosmanen (2012) where
the authors find that 1-DEA performs well even when the truncation point is misspec-
ified. However, the assumption of truncated noise (i.e., |vi | ≤ VM ) is non-standard
and debatable (see, e.g., Simar and Wilson 2011). While the consistency of 2-DEA
critically depends on this assumption, the CNLS estimator allows us to harmlessly
relax it. The next sub-section discusses the StoNED estimator with z-variables that
does not rely on the truncated noise assumption.

7.7.3 StoNED With z-Variables (StoNEZD)

Relaxing the assumption of truncated noise, we can apply CNLS to jointly estimate
the expected output conditional on inputs and the effects of the contextual variables.
Johnson and Kuosmanen (2011) were the first to explore this approach, referring
to it as StoNED with z-variables (StoNEZD). StoNEZD incorporates the contextual
variables to the stepwise procedure sescribed in Sect. 7.5. In the following, we will
focus on the CNLS estimator applied in the first step: steps 2–4 follow as described
in Sect. 7.5, and are hence omitted here.

To incorporate the contextual variables in step 1 of the StoNED estimation routine,
we can refine the multiplicative CNLS problem as follows:

min
α,β,δ,φ,ε

n∑

i=1

(εCNLS
i )

2

subject to

ln yi = ln (φi + 1) + δ′zi + εCNLS
i ∀i

φi + 1 = αi + β′ixi ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i (7.46)

23 This interpretation would vary slightly if the δi is negative. Then the contextual variable would
be an output which would reduce the firm’s ability to produce y.
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Note that problem (7.46) is identical to (7.45), except that the truncation constraint
εi ≤ VM ∀i has been removed. Therefore, the least squares residuals are unrestricted,
and hence problem (7.46) is a genuine conditional mean regression estimator.

Denote by δ̂
StoNEZD

the coefficients of the contextual variables obtained as the
optimal solution to (7.46). Johnson and Kuosmanen (2011) examine the statistical
properties of this estimator in detail, showing its unbiasedness, consistency, and
asymptotic efficiency.24 Most importantly, the authors show that the conventional
methods of statistical inference from linear regression analysis (e.g., t-tests, con-
fidence intervals) can be applied for asymptotic inferences regarding coefficients
δ. Their main result can be summarized as follows:

Theorem 8 If the following conditions are satisfied

i) sequence {(yi , xi , zi) , i = 1, . . .,n}, i = 1,. . .,n} is a random sample of inde-
pendent observations,
ii) lim

n→∞Z′Z/n is a positive definite matrix,

iii) the inefficiency terms u and the noise terms v are identically and independently
distributed (i.i.d.) random variables with V ar(u) = σ 2

u I and V ar(v) = σ 2
v I,

then the StoNEZD estimator for the coefficients of the contextual variables (δ̂
StoNEZD

)
is statistically consistent and asymptotically normally distributed according to:

δ̂
StoNEZD∼aN

(
δ, (σ 2

v + σ 2
u )(Z′Z)−1

)
.

Proof. See Johnson and Kuosmanen (2011), Theorem 2.
This theorem extends the standard result of asymptotic normality of the OLS

coefficients to the StoNEZD estimator of the contextual variables. In other words,
even though model (7.40) includes a nonparametric function in addition to a linear
regression function, the presence of the nonparametric function does not affect the
limiting distribution of the parameter estimator in the linear part. In addition, Johnson

and Kuosmanen (2011) show that the estimator δ̂
StoNEZD

converges at the standard
parametric rate, despite the presence of the nonparametric part in the regression
equation. Therefore, we can apply the standard techniques from regression analysis
such as t-tests and confidence intervals for asymptotic inferences.

A simple trick to compute standard errors for δ̂
StoNEZD

is to run OLS regression
where the contextual variables Z are regressors and the dependent variable is the
difference between the natural log of observed output subtracting the natual log of

the input aggregation plus 1, specifically ln yi − ln (φ̂i + 1) = δ̂′zi + ε̂CNLS
i . This

OLS regression will yield the same coefficients δ̂′
StoNEZD

that were obtained as the
optimal solution to problem (7.46),25 but also return the standard errors and other
standard diagnostic statistics such as t-ratios, p-values, and confidence intervals.

24 Johnson and Kuosmanen (2012) report some Monte Carlo evidence of the finite sample
performance of the StoNEZD estimator.
25 Note that this two-stage regression procedure is not subject to the problems of the 2-DEA pro-
cedure because we do control for the effects of the contextual variables in the first stage CNLS
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7.8 Heteroscedasticity

Up to this point we have assumed that the composite error term is homoscedastic,
implying the variance parameters σ 2

u and σ 2
v are constant across all firms. This is a

standard assumption both in regression analysis and in the parametric literature of
frontier estimation (e.g., Aigner et al. 1977). However, this assumption is not always
realistic in applications.

We can relax the assumption of constant σ 2
u and σ 2

v , and allow these parameters
to be firm specific (i.e., σ 2

u,i and σ 2
v,i), and potentially dependent on inputs x and

contextual variables z. We stress that the least squares approach considered in this
paper enables us to apply standard econometric techniques of testing and modeling
heteroscedasticity considered in the SFA literature (see, e.g., Kumbhakar et al. 1991;
Caudill and Ford 1993; Caudill et al. 1995; Battese and Coelli 1995; Hadri 1999;
and Kumbhakar and Lovell 2000). The purpose of this section is to provide a brief
review of how some of those techniques could be adapted for the purposes of CNLS
and StoNED.

The first question to consider is how would heteroscedasticity affect the CNLS
and StoNED estimators if we simply ignore it? Like standard OLS, the CNLS
estimator remains unbiased and consistent despite heteroscedasticity. A weighted
CNLS estimator (to be considered below) might be more efficient, provided that
the heteroscedastic variance parameters can be estimated with a sufficient precision.
However, heteroscedasticity is not a major problem for CNLS, and trying to improve
its performance through explicit modeling and estimation of heteroscedasticity may
not be worth the effort. Further research would be needed to investigate this issue.

The stepwise StoNED procedure is more sensitive to heteroscedasticity, as dis-
cussed by Kuosmanen and Kortelainen (2012). At this point, we need to distinguish
between (i) heteroscedastic inefficiency term and ii) heteroscedasticity noise term.
Ignoring type (ii) heteroscedasticity is less harmful in the StoNED estimation because
the skewness of the CNLS residuals is still driven by the homoscedastic inefficiency
term, the expected value of inefficiency is constant, and hence the shape of the
regression function (i.e., the conditional mean E(yi |x i)) is identical to that of the
frontier production function f. Type (i) heteroscedasticity will cause bigger prob-
lems, as Kuosmanen and Kortelainen (2012) recognize. If the inefficiency term is
heteroscedastic, then the expected value of inefficiency is no longer constant, and the
shapes of the regression function and the frontier production function will diverge.
To take both types of heteroscedasticity explicitly into account, in Sect. 7.8.2 we will
consider a doubly-heteroscedastic model where both inefficiency and noise terms are
heteroscedastic. But before proceeding to the explicit modeling of heteroscedasticity,
we describe a diagnostic test of the homoscedasticity assumption.

regression. It is just a computational trick to calculate the standard errors, but it can also serve as
a simple diagnostic check that the solution to problem (7.32) is indeed optimal with respect to the
contextual variables.

timo.kuosmanen@aalto.fi



230 T. Kuosmanen et al.

7.8.1 White Test of Heteroscedasticity Applied to CNLS

Although the heteroscedastic inefficiency term would bias the StoNED estimator, it is
important to emphasize that we do not need to take the homoscedasticity assumption
by faith. Standard econometric tests of heteroscedasticity such as the White or the
Breusch-Pagan tests are directly applicable to CNLS residuals. In this sub-section
we briefly describe how the White (1980) test can be applied following Kuosmanen
(2012).

The null hypothesis of theWhite test is that composite error term is homoscedastic,
that is, H0: σε,i = σε,j ∀i, j. The alternative hypothesis states there is heteroscedas-
ticity, that is, H1: σε,i 
= σε,j for some i, j. Note that the alternative hypothesis does
not assume any particular model of heteroscedasticity, which makes the White test
compatible with the nonparametric approach. Postulating a more specific alternative
hypothesis can increase the power of the test. However, the White test provides a
useful starting point for more explicit modeling of heteroscedasticity.

The White test can be built upon the OLS regression of the following equation:26

(ε̂CNLS
i )2 = α +

m∑

j=1

βjxij + 1

2

m∑

j=1

j∑

h=1

γjxij xih + εi . (7.47)

In words, we explain the squared CNLS residual by a constant, all m input variables,
and their squared values and cross-products using a flexible quadratic functional
form as an approximation of the true but unknown heteroscedasticity effects. The
test statistic is

W = nR2,

where R2 is the coefficient of determination of the OLS regression of Eq. (7.47).
Under the null hypothesis of homoscedasticity, the test statistic W follows the χ2(J )
distribution with J degrees of freedom, where J = 1+m+m(m+1)/2 is the number
of α,β, γ parameters on the right hand side of Eq. (7.47). If the value of test statistic
W falls below the critical value of χ2(J ) at the given level of significance (note:
the usual significance levels considered are 5 and 1 %), then the null hypothesis of
homoscedasticity is maintained. In that case, the test result provides some additional
reassurance that the original model is well specified. On the other hand, if the value
of test statistic W exceeds the critical value of χ2(J ) at the given level of significance,
then the null hypothesis is rejected, and hence explicit modeling of heteroscedasticity
is needed.

26 In econometrics, heteroscedasticity is usually modeled as a function of explanatory variables
(i.e., inputs x). In contrast, the SFA literature usually models heteroscedasticity as a function of
z-variables that may contain some (or all) of the inputs x. For clarity, in this section we follow the
econometric convention and focus on heteroscedasticity with respect to inputs x and discuss the
additional z-variables below.
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The White test is usually presented in terms of the regressors of the original
regression model (i.e., in terms of inputs x in the present context). Note that we are
mainly concerned about possible heteroscedasticity with respect to inputs, which
would cause bias in StoNED estimation. If we are interested in heteroscedasticity
with respect to contextual variables z, we can also introduce the z-variables to the
regression Eq. (7.47). We only need to adjust the degrees of freedom J to include the
number of additional parameters for the z-variables, otherwise the test procedure is
conducted as described above.

If significant heteroscedasticity is found, the White test does not indicate whether
heteroscedasticity is in the inefficiency term or the noise term, or possibly both. To
our knowledge, general diagnostic testing of whether heteroscedasticity is in the
inefficiency or noise term has attracted little attention in the SFA literature. The
doubly-heteroscedastic model (following Hadri 1999; and Wang 2002), to be ex-
amined in detail in the next sub-section, does allow us model heteroscedasticity in
both inefficiency and noise terms, and also test for significance of the parameter
estimates. However, such specification tests are conditional on the assumed model
of heteroscedasticity, including the parametric distributional assumptions regarding
inefficiency and noise. An appealing feature of the White test is it does not assume
any specific model of heteroscedasticity and it does not depend on the distributional
assumptions. Further, the parameter estimates of the auxiliary regression (7.47) and
the associated diagnostic tools can provide some insights on which specific inputs (or
contextual variables) are most likely causes of heteroscedasticity, and whether het-
eroscedasticity effect appears to be linear or non-linear, and whether the interaction
terms (cross-products) are significant. These insights can be useful for specifying
parametric models of heteroscedasticity, to be considered in the next sub-section.

Before proceeding, note that quantile estimation (see Sect. 7.6.4) could provide a
promising nonparametric route for testing heteroscedasticity. If the composite error
term is homoscedastic, then the q-quantiles should have approximately same shape
for different values of parameter q. Provided that the number of input (and output)
variables is sufficiently small, plotting the estimated q-quantiles at different values
of q allow one to visually inspect whether homoscedasticity holds by a reasonable
approximation. If homoscedasticity is violated, the q-quantile plots can help one
to identify in which part of the frontier heteroscedasticity occurs, and which inputs
are likely sources of heteroscedasticity. In the context of linear quantile regression,
Koenker and Bassett (1982) propose formal tests of heteroscedasticity based on the
comparison of the estimated q-quantiles at different values of q. Newey and Powell
(1987) apply a similar idea for the q-expectiles, noting that the q-expectiles could
also be used for testing symmetry of the composite error term (i.e., whether the
asymmetric inefficiency term u is significant; compare with Sect. 7.5.5). Adapting
these tests to the nonparametric CNQR method for estimating q-quantiles and the
CAWLS method for estimating q-expectiles introduced in Sect. 7.6.4 provides an
interesting challenge for future research further discussed in Sect. 7.9.
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7.8.2 Doubly-Heteroscedastic Model

If the White test indicates significant heteroscedasticity, it is difficult to tell a priori
whether heteroscedasticity is due to the inefficiency term, the noise term, or pos-
sibly both. Therefore, we will consider the general doubly-heteroscedastic model
where both the inefficiency and noise term can be heteroscedastic. The doubly-
heteroscedastic model was first considered by Hadri (1999). Our formulation below
is mainly based on Wang (2002) and Kumbhakar and Sun (2013).

Consider the unified model described in Sect. 7.2. In this section we assume the
inefficiency term has a truncated normal distribution and the noise term is normally
distributed according to

ui ∼ N+(μi , σ
2
u,i)

vi ∼ N (0, σ 2
v,i)

The pre-truncation mean of the inefficiency term is assumed to be a linear function
of inputs:

μi = α0 + β′xi .

The pre-truncation standard deviation of the inefficiency term and the standard
deviation of the noise term are specified as

σu,i = exp (α1 + γ′xi)

σv,i = exp (α2 + ρ′xi)

Note that the exponent functions are commonly used in this context to guarantee that
the standard deviations are positive at all input levels. While the specific parametric
assumption may appear arbitrary, this model is one of the most flexible and gen-
eral parametric specifications of heteroscedasticity. Note that the truncated normal
distribution where both the pre-truncation mean and variance depend on the input
level allows that the location (mean) and the shape (variance)of the inefficiency
distribution can change as a function of inputs.

This formulation of heteroscedastic inefficiency term implies that the expected
value of inefficiency can be stated as (see Wang 2002; Kumbhakar and Sun 2013)

E(ui |ui > 0) = σu,i

[
�i + φ(�i)

�(�i)

]
, (7.48)

where

�i = μi

σu,i

and φ and � are the density function and the cumulative distribution function of
the standard normal N(0,1) distribution, respectively. The expected inefficiency is
no longer a constant, but its dependence on inputs x has a well-defined functional
form conditional on the parametric assumptions stated above. This allows us to
both estimate the heteroscedasticity effects empirically, and take heteroscedasticity
explicitly into account in the StoNED procedure.
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7.8.3 Stepwise StoNED Estimation Under Heteroscedasticity

To estimate the doubly-heteroskedastic model, we can adjust the stepwise StoNED
routine presented in Sect. 7.5 as follows (a more detailed elaboration of each step
follows below):

Step 1 Apply the CNLS estimator (7.3) to estimate the conditional mean output
ĝCNLS(xi) = E(yi |xi).
Step 2 Apply quasi-likelihood estimation to the CNLS residuals εCNLS

i to estimate
the parameters of μi , σu,i , and σv,i .

Step 3 Adjust the conditional mean function by adding the expected inefficiency
E(ui

∣∣xi , μ̂i , σ̂u,i) to estimate the frontier for the observed data points using

f̂ StoNED(xi) = ĝCNLS(xi) + E(ui
∣∣xi , μ̂i , σ̂u,i).

Then apply Eq. (7.5) to estimate the frontier f̂ StoNEDmin (x) for unobserved points.

Step 4 Apply JLMS method to estimate firm-specific inefficiency using the
conditional mean E(ui

∣∣ε̂CNLS
i ).

In step 1, we estimate the conditional mean function g(x). The CNLS estimator
remains unbiased and consistent estimator of the conditional mean g, despite het-
eroscedastic composite error term (similar to OLS). However, note that in the case
of the doubly-heteroscedastic model

g(xi) = E(yi |xi) = f (xi) − E(ui |xi).
Note that the shape of function g can differ from that of frontier f because E(ui |xi)
is a function of inputs x. We will take this into account in step 3 where we shift
function g upward, not by a constant μ, but rather, by the estimated E(ui |xi).27 It is
also worth noting that function g is not necessarily monotonic increasing and concave
even if the production function f satisfies these axioms because −E(ui |xi) can be a
non-monotonic and non-concave function of inputs (note: there does exist parameter
values for which −E(ui |xi) is indeed monotonic and concave in the domain of non-
negative x). To apply CNLS in step 1, we need to assume that the curvature of the
production function f dominates and that function g is monotonic increasing and
concave (at least by approximation). Even if one assumes that f exhibits CRS, it is
recommended to apply the VRS specification in step 1 to allow for the nonlinear
effects of E(ui |xi), and impose CRS later in step 3.

27 In the context of SFA, Kumbhakar and Lovell (2000) state strongly that the stepwise MOLS
procedure cannot be used in the case of heteroscedastic inefficiency. They correctly note that the
OLS estimator used in the first step yields biased estimates of not only the intercept but also the
slope coefficients of the frontier. However, Kumbhakar and Lovell seem to overlook the possibility
of eliminating the bias by shifting function g upward by a conditional expectation of inefficiency
that depends on inputs x.
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Having estimated the parameters of the inefficiency and noise terms, it is possible
to test if monotonicity and concavity assumptions of g hold. If g does not satisfy
monotonicity and concavity, we can substitute CNLS by techniques depending on
which axiom does not hold. Specifically, if the concavity assumption is violated, it is
possible to apply isotonic nonparametric least squares (INLS) suggested by Keshvari
and Kuosmanen (2013). Another possibility is to estimate order-q quantile frontier
using either CNQR or CAWLS techniques introduced in Sect. 7.6.4. Specifying the
correct value for q will ensure that the quantile frontier inherits the monotonicity
and concavity properties of frontier f even if the heteroscedastic inefficiency term
is a non-monotonic or non-convex function of inputs. Indeed, we do not insist on
estimating the conditional mean in step 1, the conditional quantile is equally suitable.

In step 2 it is natural to resort to the pseudolikelihood method since we utilize a
rather heavily parametrized model of heteroscedasticity. As already noted in Sect. 7.5,
a simple practical trick to conduct quasi-likelihood estimation is to use the standard
ML algorithms available for SFA in standard software packages (e.g., Stata, Limdep,
or R). In this case we specify the CNLS residuals ε̂CNLS

i as the dependent variable
(i.e., the output) and a constant term as an explanatory variable (input), and the
ML algorithm performs the quasilikelihood estimation. For example, the frontier
modeling tools of Stata allows one to include “explanatory variables for technical
inefficiency variance function (uhet)” and “explanatory variables for idiosyncratic
error variance function (vhet)” if the distribution of inefficiency term is specified as
half-normal or exponential. It is also possible to include covariates to the truncated
normal specification of the inefficiency term, but in this specification the noise term
is assumed to be homoscedastic. Hung-Jen Wang has developed a Stata package for
the model described in Wang (2002), which can be used for estimating the model
estimating the heteroscedasticity model described above.28

Having estimated the underlying parameters of μi , σu,i , σv,i , it is recommended to
apply standard specification tests available for ML (i.e., likelihood-ratio, Lagrange
multiplier, or Wald test) to test restrictions β = 0, γ = 0, and ρ = 0. For example, if
the null hypothesis of ρ = 0 is not rejected, then the assumption of homoscedastic
noise term can be maintained. Similarly, if α0 = 0, β = 0, and γ = 0, then the model
of heteroscedastic truncated normal inefficiency term reduces to a homoscedastic
half-normal inefficiency term. If the specification tests provide evidence that some
of the heteroscedasticity effects are not significant, we would recommend excluding
those effects from the heteroscedasticity model and estimating step 2 again.

One additional issue is in the context of linear regressionthat efficiency of the least
squares estimator can be improved by applying weighted least squares or generalized
least squares. Having estimated the firm specific σu,i , σv,i , it is possible to return
back to step 1 and apply a weighted version of the CNLS estimator. Defining σ̂ 2

ε,i

28 The Stata package is available from Wang’s homepage: http://homepage.ntu.edu.tw/∼wangh/.
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= σ̂ 2
u,i + σ̂ 2

v,i , we can modify the objective function of the CNLS problem as

min
n∑

i=1

(εCNLS
i )2

σ̂ 2
ε,i

maintaining the original constraints of (7.3). Interpreting the given 1/σ̂ 2
ε,i as firm-

specific weights, this weighted least squares formulation of CNLS is directly
analogous to the generalized least squares (GLS) estimator of the linear regres-
sion model.29 However, as yet there is no evidence that the use of weighted least
squares can improve efficiency of the CNLS estimator. Intuitively, the direct ana-
logue with GLS would suggest that weighted least squares can be more efficient
than the unweighted CNLS under heteroscedasticity. On the other hand, recall that
CNLS approximates the underlying function g by a piece-wise linear curve. Since
the hyperplane segments of the unweighted CNLS formulation provide local ap-
proximation, assigning larger or smaller weights to certain regions of the frontier
may not have much effect on the piece-wise linear approximation. In our limited
experience, introducing the weights 1/σ̂ 2

ε,i does not necessarily have any notable
impact on the results. Further, we need to be able to estimate σ 2

ε,i with a sufficient
precision. Overall, we are somewhat skeptical whether the possible benefit in terms
of improved efficiency of the CNLS estimator can outweigh the cost of additional
effort of conducting the weighted least squares estimation. This forms an interesting
open question for future research.

In step 3 we adjust the conditional mean function g estimated in step 1 (or alterna-
tively, the conditional q-quantile) for the estimated expected inefficiency to estimate
the frontier f. Note that the conditional mean E(ui |xi) is no longer a constant, but
a function that depends on inputs x. Using Eq. (7.48), we can write the estimated
expected inefficiency as the function of inputs and parameter estimates as

E(ui
∣∣xi , μ̂i , σ̂u,i) = μ̂i + σ̂u,i

φ(�̂i)

�(�̂i)

= (α̂0 + β̂′xi) + exp (α̂1 + γ̂′xi)

[
φ

(
α̂0 + β̂

′
xi

exp (α̂1 + γ̂′xi)

)
/�

(
α̂0 + β̂′xi

exp (α̂1 + γ̂′xi)

)]

This expression reveals that in the doubly-heteroscedastic model the expected value
of inefficiency has a linear part originating from the mean μi = α0 + β′xi , and a
nonlinear part driven by σu,i = exp (α1 + γ′xi). Having estimated the parameters of
the inefficiency term, it is useful to evaluate whether −E(ûi |xi) is monotonically
increasing and concave within the observed range of inputs (e.g., plot the values
of −E(û |x) at different levels of x to visually inspect possible violations of mono-
tonicity and concavity). To ensure that the estimated frontier function satisfies the

29 Note that in the CNLS context we prefer to introduce weights to the objective function instead of
applying variable transformations (as in GLS) because the monotonicity and concavity constraints
must hold for the original input variables x.
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postulated axioms despite minor violations of monotonicity and concavity (which
may be just artifacts of the arbitrary parametric specification of the heteroscedasticity
model), we apply the minimum extrapolation principle and utilize the DEA method
stated in Eq. (7.5) to obtain the convex monotonic hull of the fitted values f̂ StoNED(xi)
of observations i= 1,. . ., n, which yields the frontier estimator f̂ StoNEDmin (x).

In step 4, we can compute firm specific inefficiency estimates using the JLMS con-
ditional mean E(ui

∣∣ε̂CNLS
i ) using the firm specific parameter estimates μ̂i , σ̂u,i , σ̂v,i .

Note that the expected inefficiency E(ui
∣∣xi , μ̂i, σ̂u,i) applied for shifting the condi-

tional mean function g to estimate frontier f does not depend on the heteroscedasticity
of the noise term. However, the JLMS efficiency does also depend on the het-
eroscedasticity of the noise term σ̂v,i . Kumbhakar and Sun (2013) discuss this issue
in more detail, showing that the marginal effect of inputs on the conditional JLMS
efficiency also depend on the heteroscedasticity of the noise term.

7.9 Directions for Future Research

This chapter has provided an updated and elaborated presentation of the CNLS
and StoNED methods. Bridging the gap between the established DEA and SFA
paradigms, these methods represent a major paradigm shift towards a unified and
integrated methodology of frontier estimation and efficiency analysis that has a con-
siderably broader scope than the conventional DEA and SFA tools. This chapter did
not only review previously published method developments and their extensions, but
also presented some new innovations, including the first extension of the StoNED
method to the general case of multiple inputs and multiple outputs, and the first
detailed examination of how heteroscedastic inefficiency and noise terms can be
modeled within the CNLS and StoNED estimation frameworks.

We see CNLS and StoNED not only as the state of the art in axiomatic nonpara-
metric frontier estimation and efficiency analysis under stochastic noise, but also
a promising way forward. Kuosmanen and Kortelainen (2012) stated explicitly 12
promising avenues of future research on the StoNED methodology. In the following
we will provide an updated version of a 12 point research program, indicating the
work that has already been done as well as work that remains to be done.

1. Adapting the known econometric and statistical methods for dealing with heteroskedas-
ticity, endogeneity, sample selection, and other potential sources of bias, to the context of
CNLS and StoNED estimators.

In this chapter we presented the first detailed examination about the modeling of het-
eroscedasticity in the inefficiency and noise terms. Kuosmanen et al. (2013) examine
the endogeneity problem from a novel perspective employing directional distance
functions. Obviously, a lot of further work is needed in this area. Alternative models
of heteroscedasticity as well as estimation techniques deserve careful attention. The
convex nonparametric quantile regression and the convex asymmetrically weighted
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least squares methods discussed in Sect. 7.6.4 and the generalized least squares es-
timator discussed in Sect. 7.8.3 provide potential methods for modeling and testing
heteroskedasticity. The use of instrumental variables in CNLS for modeling mea-
surement errors, sample selection, and other types of endogeneity bias should be
investigated.

2. Extending the proposed approach to a multiple output setting.

In this chapter we also presented the first extension of the StoNED method to the
general case of multiple inputs and multiple outputs using the directional distance
function (see also Kuosmanen et al. 2013). Further work is also needed in this area.
Alternative representations of the joint production technology, including the radial
input and output distance functions, should be investigated. The main challenge in
modeling joint production is not the formulation of the mathematical programming
problem for the CNLS estimator (the usual DEA problem) or deconvoluting the
composite error term (the usual SFA problem). The main challenge is the probabilistic
modeling of the data generating process in the case of joint production, involving
multiple endogenous inputs and outputs. Kuosmanen et al. (2013) provides a useful
starting point in this respect.

3. Extending the proposed approach to account for relaxed concavity assumptions (e.g.,
quasiconcavity).

Keshvari and Kuosmanen (2013) presented the first extension in this direction, apply-
ing isotonic regression that relaxes the concavity assumption of CNLS. This approach
estimates a step function analogous to free disposable hull (FDH) in the middle of the
data cloud. The insights of Keshvari and Kuosmanen could be useful for examining
the intermediate cases between the non-convex step function and the fully convex
CNLS, allowing one to postulate quasiconcavity or quasiconvexity in terms of some
variables (e.g., inputs, or input prices in the estimation of the cost function). Many
opportunities for future research exist in this direction.

4. Developing more efficient computational algorithms or heuristics for solving the CNLS
problem.

Lee et al. (2013) is the first contribution in this direction. The algorithm developed in
that paper first solves a relaxed CNLS problem containing an initial set of constraints,
those that are likely to be binding, and then iteratively adds a subset of the violated
concavity constraints until a solution that does not violate any constraint is found.
We believe the computational efficiency can be improved considerably by clever
algorithms and heuristics (see, e.g., Hannah and Dunson 2013). This is an important
avenue for future research in the era of “big data”.

5. Examining the statistical properties of the CNLS estimator, especially in the multivariate
case.

Seijo and Sen (2011) and Lim and Glynn (2012) were the first to address this
challenge, proving statistical consistency of the CNLS estimator in the general mul-
tivariate case under slightly different assumptions about the data generating process.
Further research on both the finite sample properties (e.g., unbiasedness or bias,
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efficiency, mean squared error) and the asymptotic properties (e.g., rates of con-
vergence, limiting distributions) under different assumption of the data generating
process would be needed. In this respect, Groeneboom et al. (2001a, 2001b) provide
an excellent starting point. The statistical properties of the convex nonparametric
quantile regression (CNQR) and the convex asymmetrically weighted least squares
(CAWLS) methods introduced in Sect. 7.6.4 also deserve further research.

6. Investigating the axiomatic foundation of the CNLS and StoNED estimators.

CNLS regression builds upon the same axioms as DEA, and StoNED estimation
applies the minimum extrapolation principle to obtain a unique frontier function that
satisfies the postulated axioms. However, it would be compelling if the technology
characterized by CNLS and/or StoNED could be stated rigorously from the axiomatic
point of view as the intersection of all sets that satisfy the stated axioms and satisfy
axiom X. It remains unknown whether axiom X exists, and how it could be formulated
explicitly.

7. Implementing alternative distributional assumptions and estimating the distribution of the
inefficiency term by semi- or nonparametric methods in the cross-sectional setting.

In this chapter (Sect. 7.5.2) we have provided an extensive review of possibilities, in-
cluding parametric and semi-parametric alternatives. In principle, the quasilikelihood
method is applicable to any parametric specification of inefficiency distribution. The
most promising way forward seems to be the nonparametric kernel deconvolution
of the CNLS residuals, following the works by Hall and Simar (2002) and Horrace
and Parmeter (2011). One challenge that remains is to adapt the JLMS conditional
mean inefficiency to the semi-parametric setting where no parametric distribution is
specified for the inefficiency term.

8. Distinguishing time-invariant inefficiency from heterogeneity across firms, and identifying
inter-temporal frontier shifts and catching up in panel data models.

Kuosmanen and Kortelainen (2012) present a simple fixed effects approach to mod-
eling panel data, assuming time-invariant inefficiency. In this chapter we considered
the parallel random effects approach, following Eskelinen and Kuosmanen (2013).
Ample opportunities for extending these basic techniques to more sophisticated semi-
parametric models allowing for technical progress and time-varying inefficiency are
available. Indeed, panel data models have been extensively studied both in general
econometrics and in the SFA literature. Both the insights and practical solutions from
panel data econometrics can be imported to the CNLS and StoNED framework.

9. Extending the proposed approach to the estimation of cost, revenue, and profit functions
as well as to distance functions.

Kuosmanen and Kortelainen (2012) consider the estimation of cost function in the
single output case under CRS. They made these restrictive assumptions because the
cost function must be a concave function of input prices. However, if the standard
convexity axiom of the production possibility set holds, then the cost function is a
convex function of outputs. A challenge that remains is to formulate the CNLS prob-
lem such that we can estimate a function that is convex in one subset of variables (i.e.,
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outputs), but concave in another subset of variables (i.e., input prices). Kuosmanen
(2012) estimates a multi-output cost function using StoNED, but the input prices
were excluded by assuming that all firms take the same input prices as given.

10. Developing a consistent bootstrap algorithm and/or other statistical inference methods.

An earlier version of Kuosmanen and Kortelainen (2012) proposed to adapt the para-
metric bootstrap method proposed by Simar and Wilson (2010) for drawing statistical
inferences in the StoNED setting. However, the anonymous reviewers were not con-
vinced that the proposed boostrap method is necessarily consistent when applied
to the CNLS residuals. Indeed, one should be wary of naı̈ve bootstrap and resam-
pling approaches that produce invalid and misleading results. Since Kuosmanen and
Kortelainen were not able to prove consistency of Simar and Wilson’s bootstrap pro-
cedure in the CNLS case, the suggestion was excluded from the published version.
We stress that adapting one of the known variants of the bootstrap method to the
context of CNLS and StoNED would be straightforward. The challenge is to prove
that the chosen version of bootstrap method is consistent under the stated assump-
tions about the data generating process. Another promising approach is to test if
CNLS estimates differ significantly from the corresponding estimates obtained us-
ing parametric methods (see Sen and Meyer 2013). As for the contextual variables,
Johnson and Kuosmanen (2012) prove that conventional inference techniques from
linear regression analysis (e.g., t-tests, p-values, confidence intervals) can be applied
for the parametric part (i.e., the coefficients of the contextual variables).

11. Conducting further Monte Carlo simulations to examine the performance of the proposed
estimators under a wider range of conditions, and comparing the performance with other
semi- and nonparametric frontier estimators.

Several published studies provide Monte Carlo evidence on the finite sample per-
formance of CNLS and StoNED estimators. Kuosmanen (2008) and Kuosmanen
and Kortelainen (2012) provide the first simulation results for CNLS and StoNED,
respectively, focusing on the precision in estimating the frontier production function
f. Johnson and Kuosmanen (2011) present MC simulations regarding the estimation
of the parametric δ representing the effect of a single contextual variable z that may
be correlated with input x. Andor and Hesse (2014) provide an extensive comparison
of the performances of DEA, SFA, and StoNED, mainly focusing on the estimation
of the firm specific inefficiency ui . However, note that all estimators considered are
inconsistent in the noisy setting considered because ui is just a single realization of
a random variable. Kuosmanen et al. (2013) compare performances of DEA, SFA
and StoNED in terms of estimating a frontier cost function. They calibrate their sim-
ulations to match the empirical characteristics of the Finnish electricity distribution
firms. Their simulations demonstrate that if the premises stated by the Finnish en-
ergy regulator hold, then the StoNED estimator has superior performance compared
to its restricted special cases, DEA and SFA. As for further research, it would be
interesting to compare performance of CNLS and StoNED with those of other semi-
and nonparametric frontier estimation techniques such as kernel regression and local
maximum likelihood.
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12. Applying the proposed method to empirical data, and adapting the method to better serve
the needs of specific empirical applications.

The first published application of the StoNED method was Kuosmanen and Kuos-
manen (2009), who estimated the production function from the data of 332 Finnish
dairy farms in order to assess sustainability performance of farms. Subsequently,
there have been several applications in the energy sector, both in production and
distribution of electricity. Mekaroonreung and Johnson (2012) applied StoNED to
estimate the shadow prices of SO2 and NOx from the data of U.S. coal-fired power
plants. Thus far, the most significant real-world application of StoNED has been
the study by Kuosmanen (2012) [see also Kuosmanen et al. (2013), Dai and Ku-
osmanen (2014), and Saastamoinen and Kuosmanen (2014)]. Based on the results
of this study, the Finnish energy market regulator adopted the StoNED method in
systematic use in the regulation of the Finnish electricity distribution industry, with
the total annual turnover of more than € 2 Billion. Another real-world application
of StoNED is Eskelinen and Kuosmanen (2013), who assessed inter-temporal per-
formance of sales teams using monthly data of Helsinki OP-Pohjola Bank, in close
collaboration with the central management of the bank. The results and insights
gained in this study were communicated to the team managers and were utilized for
setting performance targets for sales teams. These empirical applications illustrate
the flexibility and adaptability of the StoNED methodology to suit the specific needs
of the application. The applications also provide motivation for developing further
methodological extensions to meet the requirements of future applications.

In conclusion, we hope the 12-point program discussed above might inspire future
methodological research along the lines described or along new avenues that have
escaped our attention. We also hope that the methodological tools currently available
would find inroads to empirical applications. In our experience from both Monte
Carlo simulations and real empirical applications, CNLS and StoNED has proved
dependable, reliable and robust, with an ability to produce results and insights that
could not be found using the conventional methods.
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